P2257 YY的GCD
P2257 YY的GCD
题目描述
神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……
多组输入
输入输出格式
输入格式:
第一行一个整数T 表述数据组数
接下来T行,每行两个正整数,表示N, M
输出格式:
T行,每行一个整数表示第i组数据的结果
输入输出样例
说明
T = 10000
N, M <= 10000000
思路:倍数莫比乌斯反演。
(太长时间没写字了。。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e7 + ;
int t;
//线性筛法求莫比乌斯函数
bool vis[N + ];
int pri[N + ];
int mu[N + ];
ll sum[N];
int f[N];
void mus() {
memset(vis, , sizeof(vis));
memset(f,, sizeof(f));//f[n]=sum(mu[n/p])
mu[] = ;
int tot = ;
for (int i = ; i < N; i++) {
if (!vis[i]) {
pri[tot++] = i;
mu[i] = -;
}
for (int j = ; j < tot && i * pri[j] < N; j++) {
vis[i * pri[j]] = ;
if (i % pri[j] == ) {
mu[i * pri[j]] = ;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
for(int i=;i<N;i++)
for(int j=;j<tot&&pri[j]*i<N;j++) f[i*pri[j]]+=mu[i];//需要重复更新,不能放在线性筛内部
sum[]=;
for(int i=;i<N;i++) sum[i]=sum[i-]+f[i];
}
int n,m,k;
ll cal(int x,int y){
int ma=min(x,y);
ll res=;
for(int i=,j;i<=ma;i=j+){
j=min(x/(x/i),y/(y/i));
if(j>=ma) j=ma;
res+=1ll*(sum[j]-sum[i-])*(x/i)*(y/i);
}
return res;
} int main() {
mus();
scanf("%d",&t);
for(int i=;i<=t;i++){
scanf("%d%d",&n,&m);
ll ans;
ans=cal(n,m);
printf("%lld\n",ans);
}
return ;
}
P2257 YY的GCD的更多相关文章
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
- 题解 P2257 YY的GCD
P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...
- P2257 YY的GCD (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- Luogu P2257 YY的GCD
莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...
随机推荐
- ps cs6破解补丁使用方法
第一步.首先下载ps cs6破解补丁 ,再下载官方ps cs6中文版,安装之后运行一次.第二步.先备份你想要激活的软件的“amtlib”文件,比如PS CS6 64bit其目录在“C:\Program ...
- 一句DOS命令搞定文件合并
用Dos的copy命令实现: copy a.js+b.js+c.js abc.js /b 将 a.js b.js c.js 合并为一个 abc.js,最后的 /b 表示文件为二进位文件,copy 命令 ...
- Linux下SVN安装配置及应用
一.安装篇 centos下yum安装 yum install subversion 查看安装是否成功: svnserve --version 二.配置篇 创建svn版本库目录 mkdir /home/ ...
- sql with 写法
with h_asign_id as ( select asign_id from assign_h h left join assignment a on a.id = h.asign_id whe ...
- January 26 2017 Week 4 Thursday
Wasting time is robbing yourself. 浪费时间就是掠夺自己. Wasting time is not only robbing yourself, moreover, i ...
- Android进阶笔记17:Android手机屏幕坐标系
1. 手机屏幕坐标系: 整个坐标系是以手机屏幕左上角为原点(0,0),如下:
- js中返回上一页
<a class="btn btn-danger" href="javascript:history.go(-1);">取消</a>
- HDU 2588 GCD 【Euler + 暴力技巧】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others) Mem ...
- .ne 基础(2)
类是一种抽象 抽象的概念,具体的实例. 现实是先有对象,再抽象成类,再用类来创建实例 构造方法 (1)如果写好了类,不写构造方法,系统会默认一个无参的构造方法 (2) 如果手动添加了一个 构造方法,就 ...
- n维向量旋转(循环移位)——学习《编程珠玑》
问题: 将一个n元一维向量向左旋转i个位置.例如,当n=8且i=3时,向量abcdefgh旋转为defghabc. 简单的代码使用一个n元的中间向量在n步内完成该工作. 你能否仅使用数十个额外字节的存 ...