Description

使用过Android手机的同学一定对手势解锁屏幕不陌生。Android的解锁屏幕由3x3个点组成,手指在屏幕上画一条
线将其中一些点连接起来,即可构成一个解锁图案。如下面三个例子所示:
画线时还需要遵循一些规则
1.连接的点数不能少于4个。也就是说只连接两个点或者三个点会提示错误。
2.两个点之间的连线不能弯曲。
3.每个点只能"使用"一次,不可重复。这里的"使用"是指手指划过一个点,该点变绿。
4.两个点之间的连线不能"跨过"另一个点,除非那个点之前已经被"使用"过了。
对于最后一条规则,参见下图的解释。左边两幅图违反了该规则:而右边两幅图(分别为2→4→1→3→6和→5→4→1→9→2)
则没有违反规则,因为在"跨过"点时,点已经被"使用"过了。
现在工程师希望改进解锁屏幕,增减点的数目,并移动点的位置,不再是一个九宫格形状,但保持上述画线的规则不变。
请计算新的解锁屏幕上,一共有多少满足规则的画线方案。

Input

输入文件第一行,为一个整数n,表示点的数目。
接下来n行,每行两个空格分开的整数xi和yi,表示每个点的坐标。
-1000≤xi,Yi≤l000,1≤n<20。各点坐标不相同

Output

输出文件共一行,为题目所求方案数除以100000007的余数。

Sample Input

4
0 0
1 1
2 2
3 3

Sample Output

8
解释:设4个点编号为1到4,方案有1→2→3→4,2→1→3→4,3→2→1→4,2→3→1→4,
及其镜像4→3→2→1,3→4→2→1,2→3→4→1,3→2→4→1.

Solution

一道挺简单的状压DP……
不知道CQ省选为什么会出状压板子题
先预处理出连接两点会经过哪些点
然后f[i][S]表示以i结尾,当前已经选中的点状态为S
从小到大枚举S进行转移
理论复杂度n^2*2^n,然而肯定跑不满就是了。
还有把1e-16写成-1e16这么丢人的事我才不会说╭(╯^╰)╮  

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N (600000)
using namespace std;
int n,x[N],y[N],f[][N],line[][],ans,num[N]; double K(double x1,double y1,double x2,double y2)
{
if (x1==x2) return ;
if (y1==y2) return ;
return (y2-y1)/(x2-x1);
} int main()
{
scanf("%d",&n);
for (int i=; i<=n; ++i)
scanf("%d%d",&x[i],&y[i]); for (int i=; i<=n-; ++i)
for (int j=i+; j<=n; ++j)
{
line[i][j]=line[j][i]=(<<i-)|(<<j-);
for (int k=; k<=n; ++k)
{
if (abs(K(x[k],y[k],x[i],y[i])-K(x[j],y[j],x[i],y[i]))>1e-) continue;
if (!( x[k]>=min(x[i],x[j]) && x[k]<=max(x[i],x[j]) )) continue;
if (!( y[k]>=min(y[i],y[j]) && y[k]<=max(y[i],y[j]) )) continue;
line[i][j]|=(<<k-), line[j][i]=line[i][j];
}
} for (int i=; i<=n; ++i)
f[i][<<i-]=;
for (int i=; i<=(<<n)-; ++i)
for (int j=; j<=n; ++j)
if (i&(<<j-))
for (int k=; k<=n; ++k)
if (!(i&(<<k-)) && (((i|line[j][k])^(<<k-)))==i)
(f[k][i|(<<k-)]+=f[j][i])%=; for (int i=; i<=(<<n)-; ++i)
{
int x=i,cnt=;
for (int j=; j<=n; ++j){if (x&) cnt++; x>>=;}
if (cnt<) continue;
for (int j=; j<=n; ++j)
(ans+=f[j][i])%=;
}
printf("%d",ans);
}

BZOJ5299:[CQOI2018]解锁屏幕(状压DP)的更多相关文章

  1. bzoj 5299: [Cqoi2018]解锁屏幕 状压dp+二进制

    比较简单的状压 dp,令 $f[S][i]$ 表示已经经过的点集为 $S$,且最后一个访问的位置为 $i$ 的方案数. 然后随便转移一下就可以了,可以用 $lowbit$ 来优化一下枚举. code: ...

  2. bzoj5299: [Cqoi2018]解锁屏幕

    题目链接 bzoj 5299: [Cqoi2018]解锁屏幕 题解 很水的装压dp,相信没人需要看题解.... dp[i][j]表示状态为i最后一个到的点为j,然后转移就很好写了 不过 我读入优化没读 ...

  3. BZOJ5299 [Cqoi2018]解锁屏幕 【状压dp】

    题目链接 BZOJ5299 题解 就一个毒瘤卡常题..写了那么久 设\(f[i][s]\)表示选了集合\(s\)中的点,最后一个是\(i\),进行转移 要先预处理出两点间的点,然后卡卡常就可以过了 # ...

  4. [学习笔记]状压dp

    状压 \(dp\) 1.[SDOI2009]Bill的挑战 \(f[i][j]\) 表示匹配到字符串的第 \(i\) 位状态为 \(j\) 的方案数 那么方程就很明显了,每次枚举第 \(i\) 位的字 ...

  5. [Luogu] P4460 [CQOI2018]解锁屏幕

    题目背景 使用过Android 手机的同学一定对手势解锁屏幕不陌生.Android 的解锁屏幕由3X3 个点组成,手指在屏幕上画一条线,将其中一些点连接起来,即可构成一个解锁图案.如下面三个例子所示: ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. bzoj 4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...

  2. npm proxy报错处理

    npm经常抽风,动不动安装一个模块就这样了: 提示是否设置了正确的代理地址,解决方法网上有很多,有说取消代理.重新设置代理等等,最简单粗暴解决: 删除nodejs安装路径下面的npmrc文件,再使用淘 ...

  3. webpack使用extract-text-webpack-plugin打包时提示错误Use Chunks.groupsIterable and filter by instanceof Entryp

    转自:https://blog.csdn.net/gezilan/article/details/80020417 前提条件: 当前时间是2018年4月20日. webpack的最新版本为是 v4.6 ...

  4. tomcat启动编码等部署遇到问题

    版权声明:本文为博主原创文章,转载请注明文章链接.https://blog.csdn.net/xiaoanzi123/article/details/58254318 2017-02-27 21:01 ...

  5. javascript之Array()数组函数讲解

    Array()是一个用来构建数组的内建构造器函数.数组主要由如下三种创建方式: array = new Array() array = new Array([size]) array = new Ar ...

  6. 一、linux下安装redis(单机)

    1.下载redis,http://download.redis.io/releases/redis-3.2.7.tar.gz 2.linux我用的是centos6.5 3.把redis上传到cento ...

  7. nodejs繁琐地自建路由

    一.繁琐的自建路由 app.js var server = require('./server'); server.startServer(); server.js var http = requir ...

  8. 用css3+js写了一个钟表

    有一天看到css3旋转这个属性,突发奇想的写了一个钟表(没做浏览器兼容),来一起看看是怎么写的吧! 先给个成品图,最终结果是个样子的(动态的). 首先,思考了一下页面的布局,大致需要4层div,最底层 ...

  9. HTML5学习笔记之canvas

    标签 canvas标签有一个默认宽高:300*150: canvas的宽高一般写到行间样式中,写在style会有问题详细请看这里: 绘制环境 要绘图先要获取到绘制环境: var oC = docume ...

  10. Windows API 编程----EnumWindows()函数的用法

    1. 函数原型: BOOL WINAPI EnumWindows( _In_ WNDENUMPROC lpEnumFunc, _In_ LPARAM lParam); lpEnumFunc: 应用程序 ...