The Balance
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5991   Accepted: 2605

Description

Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine and three 300mg weights on the opposite side (Figure 1). Although she could put four 300mg weights on the medicine side and two 700mg weights on the other (Figure 2), she would not choose this solution because it is less convenient to use more weights. 
You are asked to help her by calculating how many weights are required. 

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers a, b, and d separated by a space. The following relations hold: a != b, a <= 10000, b <= 10000, and d <= 50000. You may assume that it is possible to measure d mg using a combination of a mg and b mg weights. In other words, you need not consider "no solution" cases. 
The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of lines, each corresponding to an input dataset (a, b, d). An output line should contain two nonnegative integers x and y separated by a space. They should satisfy the following three conditions.

  • You can measure dmg using x many amg weights and y many bmg weights.
  • The total number of weights (x + y) is the smallest among those pairs of nonnegative integers satisfying the previous condition.
  • The total mass of weights (ax + by) is the smallest among those pairs of nonnegative integers satisfying the previous two conditions.

No extra characters (e.g. extra spaces) should appear in the output.

Sample Input

700 300 200
500 200 300
500 200 500
275 110 330
275 110 385
648 375 4002
3 1 10000
0 0 0

Sample Output

1 3
1 1
1 0
0 3
1 1
49 74
3333 1
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
LL extgcd(LL a,LL b,LL &x,LL &y)
{
LL d=a;
if(b!=)
{
d=extgcd(b,a%b,y,x);
y-=(a/b*x);
}
else
{
x=;
y=;
}
return d;
}
LL GCD(LL a,LL b)
{
if(b==)
{
return a;
}
return GCD(b,a%b);
}
LL a,b,d;
int main()
{
while(scanf("%lld%lld%lld",&a,&b,&d)!=EOF&&(a+b+d)!=)
{
LL x,y;
LL gcd=GCD(a,b);
a/=gcd;
b/=gcd;
d/=gcd;
extgcd(a,b,x,y);
x*=d;
y*=d; LL x1=x;
x1=(x1%b+b)%b;//ax+by=1最小正整数解
LL y1=(d-a*x1)/b;
if(y1<)y1=-y1; LL y2=y; y2=(y2%a+a)%a; //最小正整数解
LL x2=(d-b*y2)/a;
if(x2<)x2=-x2; if(x1+y1<x2+y2)
{
printf("%lld %lld\n",x1,y1);
}
else
{
printf("%lld %lld\n",x2,y2);
}
} return ;
}

Java版:

import java.util.Scanner;

class BigInt{
private long x;
public BigInt(){}
public BigInt(long x)
{
this.x = x;
}
void setValue(long x)
{
this.x = x;
}
long getValue()
{
return x;
}
}
public class Main{
Scanner in = new Scanner(System.in);
long a, b, c;
long gcd(long a, long b)
{
if(b == )
{
return a;
}
return gcd(b, a % b);
}
long extgcd(long a, long b, BigInt x, BigInt y)
{
long d = a;
if(b != )
{
d = extgcd(b, a % b, y, x);
y.setValue(y.getValue() - a / b * x.getValue());
}
else
{
x.setValue();
y.setValue();
}
return d;
}
public Main()
{
while(in.hasNext())
{
a = in.nextLong();
b = in.nextLong();
c = in.nextLong();
if(a + b + c == ) break;
long gcd = gcd(a, b);
a /= gcd;
b /= gcd;
c /= gcd;
BigInt x = new BigInt(), y = new BigInt();
extgcd(a, b, x, y);
x.setValue(c * x.getValue());
y.setValue(c * y.getValue()); long x1 = x.getValue();
long y1 = y.getValue();
x1 = (x1 % b + b) % b;
y1 = (c - x1 * a) / b;
if(y1 < ) y1 = -y1; long x2 = x.getValue();
long y2 = y.getValue();
y2 = (y2 % a + a) % a;
x2 = (c - y2 * b) / a;
if(x2 < ) x2 = -x2;
if(x1 + y1 < x2 + y2)
{
System.out.println(x1 + " " + y1);
}
else
{
System.out.println(x2 + " " + y2);
}
}
}
public static void main(String[] args){ new Main();
}
}

POJ2142(扩展欧几里得)的更多相关文章

  1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  2. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  3. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  4. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  5. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  6. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  7. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  8. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  9. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

随机推荐

  1. 将hibernate.cfg.xml文件都放到spring中时报错

    报错如下所示: 私以为是配置文件出现问题了. <?xml version="1.0" encoding="UTF-8"?> <beans xm ...

  2. MVVM3

    MVVM设计模式 2010-09-19 23:59:18|  分类: MVVM |  标签:mvvm  silverlight4  mvc  mvp  command  |举报|字号 订阅     一 ...

  3. python 邮件发送实例

    #!/usr/bin/env python # -*- coding: utf-8 -*- from email.header import Header from email.mime.text i ...

  4. mysql中的过滤分组

    本文节选自<MYSQL必知必会> 一. 过滤分组 除了能用GROUP BY分组数据外,MySQL还允许过滤分组,规定包括哪些分组,排除哪些分组.例如,可能想要列出至少有两个订单的所有顾客. ...

  5. 卸载mac多余的音频驱动:internal audio driver corel painter

    $ kextstat | grep corel 130 0 0xffffff7f81042000 0x4000 0x4000 com.corel.painter.PainterAudioDriver ...

  6. react-quill 富文本编辑器

    适合react的一款轻量级富文本编辑器 1.http://blog.csdn.net/xiaoxiao23333/article/details/62055128 (推荐一款Markdown富文本编辑 ...

  7. MYSQL变量和状态

    mysql设置变量是在my.cnf文件里,修改配置文件后需要重启mysql的服务,才能生效.但是在线上服务器是不允许随便重启的,我们可以用命令直接修改变量值,使其生效.然后再修改配置文件中的值,以防止 ...

  8. 本地动态SQL

    (转自:http://blog.itpub.net/26622598/viewspace-718134) 一.什么是动态SQL 大多数PL/SQL都做着一件特殊的结果可预知的工作.例如,一个存储过程可 ...

  9. JAM计数法(模拟)

    题目描述 Jam是个喜欢标新立异的科学怪人.他不使用阿拉伯数字计数,而是使用小写英文字母计数,他觉得这样做,会使世界更加丰富多彩.在他的计数法中,每个数字的位数都是相同的(使用相同个数的字母),英文字 ...

  10. 谈一下思考,关于mybatis中<foreach collection="list">中list得来的原因 没看到官方说明

    <foreach> 是在sql语句中进行多个id查询 时用到的,因为mybatis代替jdbc和hibernate, 使用 在xml文件中编写sql语句,这是一个标签文件.然后在 dao层 ...