概念:

  并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有求连通子图、求最小生成树的Kruskal 算法和求最近公共祖先等。

操作:

  并查集的基本操作有两个:

  Union(x, y):把元素x 和元素y 所在的集合合并,要求x 和y 所在的集合不相交,如果相交则不合并。

  Find(x):找到元素x 所在的集合的代表,该操作也可以用于判断两个元素是否位于同一个集合,只要将它们各自的代表比较一下就可以了。

实现:  

  并查集的实现原理也比较简单,就是使用树来表示集合,树的每个节点就表示集合中的一个元素,树根对应的元素就是该集合的代表,如下图所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANIAAAC1CAIAAAClCjb3AAAg7klEQVR4nO1da1AV1x3fziRTki+STmugcUDiRKtWxKbRagVKFBxFUAgiREFaXolGyFAUogjKKwUtDSjO8HAqIGmroBGoGR5WeaiJlEQhygSnCowJ4jQj94vCp/bHHrNu9l4uu2cf3L13fx+Yvcvd8997zu//OnvOf5/73//+xxgwoC2em+kbUAUTExN1dXVDLAYHB7nzc+fO9fHx8fb2dnNzm7m70yW6u7tbW1tx0N7ezp10cnLy9fVFf77xxhuSWrM32rW1tZ05c6a+vv6tt95yd3cHyaKiorj/goUdHR2HDh1atmxZamqq1M5yQAwPD0OBT548+dJLL61btw5nDhw4wP13fHy8s7MTPXn37t309PS4uLgf//jHYpq1H9qBcCkpKR4eHuHh4SUlJRZ//+rVq7dt24aDpqYmdBaUFZ2Ik5rfrA5gMpn27t176dKlyMhIMG/+/PkWv7Z27Vr8HR0dLSoqWrJkyTvvvBMbGztr1izrjdsD7UgHPXjwwErvCLCRRVdXV05ODj5WV1e//PLLKt+mnlBbW1tQUJCWllZWVibm++g9fB9qf/z4cfiQrKwsot5TQfe0g5HbuXPntL/TImDnmpubQb6goKATJ05AWdW4Q30BYXF0dLSzszMiOamqiO8jgAH5YAV6e3tBxKm+qW/agXMVFRWIdqe16lYA8jU2NsI1JyUlISJU8PZ0B/iNhIQERMNwBdSNYCxgI0tLS7du3VpeXm5xaHRMO8I5+EeRYawVQE1bWlrQ48g5oKyK3J7uAM5B9/bs2UPCNZnYtWsXUjo0iDEynzfQK+2Qq54+fVoRzhGgnaqqKkQzCI0dkHmEc0eOHFEw0oDJBPPCwsLgrwU2T5e0GxgYQNyA1F0pznFAs3QTUXoHAgwYe8WjWzSYnJyMUE+QmuiSdvHx8QgdFOccQU1NDdQU8aJK7dsgkLc6OTmpFNci1UMAQ2ZSuZP6o11+fv66devUs0YIROBqof0i5w70juHh4eLiYvIEQiWUlJTAgSB141JjndEO7vWTTz6Be1VVChQUgSNSFkWCaxsHcojMzEw5UwHTAo0fP348Ojq6ubmZnNEZ7U6cOLFjxw4N3F9ubm5sbKzd0w5q3N/fL2e6RCRg6uDHOU3WE+0mJiZAu2+++UYDWYiFX3rppa6uLvt+dIb+TExM1EYWIvKKigr90a6yshIWSLNIH5kdusmOaaelGjPsfMq77747OjqKCE9PtKuqqkI3aSYOeqmZJZgRNDU1BQYGapmwb9iwAX4WobOeaHfr1i2RT/oVAQLhxYsXd3d32+scXm9v79KlS7WUGBAQ0NDQoCfaIfidN2+exnNpXl5eGBt7pd2NGzd2796tpUT05AcffMDoKLYD7RYuXKixUHd39+HhYY2FaoYvvvhC40U3iOpIKKkn2v3iF7/QWCi66euvv9ZYqGa4f/++xqsM4ax+8pOfIKvQDe0QaQ0NDZFjpGCO8+RKA2jfn7qhnbOz89jYmMlkys/PHxwc/Mc//qGB0PHxcScnJw0EzQhee+01hBAIXlNSUpDVapOuEROrG9rhXnt6epBVfPfdd3PmzNFGKJlk0kaW9oBG7dix4/Llyzju6+vTgHYwqy+++CKjF2vX1dW1c+fOW7dukY/QGKipBpsOb968yd94ZjcgTgNU485cv35dg5XV3d3dZPrd1mkHe7N3797q6mrBebgGDWh38eLF8vJytaVojBMnThw8eBCqyz9548YNDUR3dHT4+voytk+7oqIic84xrN6o/QAbxuDVV19VdWmG9hgYGEhLS0OgIjiPAEYD6e3t7WSbra3TrqCgAFbtvffeE5zXQDtPnTqF0EdtKRoDAdzVq1ehsXfu3OGfBxGhZqpO4yEuunfvnj6cLMNuBnFxcYmOjn78+DF38sqVK6oKRfD78ccff/XVV6pKmRGAefAV/v7++Ms/j7hFVdqVlpYmJyeTYx3QDkC0i4xy8+bNnHfAgfWsoqmpCf3IsGnB2NiYs7Mzef7o6emJHp92mqqysvLtt9+2Mw/LAb+rs7MzPDy8oaGBO4nusrLXGN4ZXTo+Po50hLgaLy+vWSzQn9Nmwbjq3LlzHNH1QTuGXSd46dIl8I/zDvgN5rSrr69HV/7zn/9cs2YN4RlSUTLnR1hYU1MTExMTGBgYHBw8Ve6GPKasrEztNcwzCyje+fPnExMTuZzps88+M/8adBvBxt///ncch4SE4Cr0eVBQEMPqM8iEL4SFheFjRETE9u3bpzIEmZmZiCk5NdYN7Rh26WVbWxt+JFEaQc4PXdy3b9+yZcvAp5KSEnNDxaUgcKD4Mtj5wQcffPjhh+bkQ+6clZVlr6aOD2iXu7v7/v37cfzvf/+b/y/wKS8vD6oOLbVY5YNbiYj4G7YQ31m7dq2fn192drZgshPjBQNZXFzMndET7Rh2f01rayu8Q0tLC5dV4DdDzzw8PETWQIHKvsUCPYvECr3Gr0RBXInjlAeAroJ5CQkJCJ25rAJaB58ovgYKun0fi9raWm9v78jIyEOHDpF/wSKmpqZWVFTwv68z2jFsXAJDlZSUBH/KsDPJUFa6CiYgcVVVFfoamTKpRAG9PHr0KD/icQQgpIN9gpeEA0GfIHvz9fWl27KJpuCOkD1s2rSpuroag4XWoNsCc6A/2jGsuYIWIr3Nz89vb28HS+Q4RPCVVKKA+ezo6Dh9+rQDrjOAf4Q/ReArvx4Fei8lJQWpG5p65ZVXEPOYt6ZL2hFAL69du8btgZMDUokiNDR0xYoVdvwQ1jpmz56N/jx+/Lgi0yig2osvvghTh+jZ/L96pR18K4wcLJOCbZ49e3bHjh2C/esOAlJfjJRGVKrNVatW/e1vf0OzGCmBA9El7ZAKwIwjt1DcG5aXl8MpwI7a60L2qZDAQvFfjQZJy3Am/PO6pB2CVuQQakxwgMcIhJGLIc9wnAhP1eQdzcIpQQT/Gbr+aIcf4OHhod5jHMR2ISEhlZWVu3btUkmErSE7O1vVnaAZGRmxsbH6pp3afQTAg8Pgia87rmuUlpb6+fmp+jQWja9cuRKjBvKRMzqjXVtbm6urq9r7nWDw1q9ff+rUKa6b7BhlZWV1dXVqS4HrQGikV9qdOXMmPDxcA0FbtmzJycmxe9oNDAww7DMGtQURERBHDnRGuwsXLsDJaiAIKdjt27dNJpN9P5mFnYuIiNBGFgRB3L59+xh90a6rq2vRokXaTOciqtuwYQPSF4r3DugIn3zyiWZlZYKCguA99Ee7oaGhuXPnaibO3d2d25lrr9CyrAwEcZuwdEY7UEHqVT/60Y+4Y0mvk4Ssjo4OqeJ0BIQQL7zwgtRsnbo/IQjiSNyiJ9qNjo56enpKugR9xO8awUfrgDd/8OCBJHH6Avrz5z//uaRL5PQnAHEQqjPaUezRJ53CV1DxgCxIpLhQL3j48KGrq6vUq+g6kwDiIBTeVk+0o+MBXyMldZl9V6Jg2CUnIyMjUq+S897re/fukVXveqIdvB5MtKRLpHoBPiDLxcWF7lpdAP357bffainxm2++IRMReqKdxjE+XQajIyDGevLkiZxyT5K0mp/B6Ix2/DewiwE6ReBYxfcUaOfj4yNJnO7w61//WlK5UkF/SvIkAwMDixcvJsd6ot3q1atv374ttQoTnZOFDbhw4UJhYSHFtTrCpk2bmpqaJC2zow5aIAjiyLGeaAeEhobi7jV4VNrZ2fmrX/3Kvp+MMewmzrCwMG6Xl6o4d+4ct+ZAZ7TT7Am9ZmsOZhbz589Htq529ROGrWMEQdwTEZ3RDn720aNHancT/PilS5dKSkrUE2E7yMzMzM3NVbs6KkRAEPdRZ7RjNOmm/Pz8tLQ0R1jjybB+Njs7W1VNRuP37t3T9+pi3H1NTY1gbb6CQB9du3aNXznB7qG2JgtMHaNH2gGHDx+OiopC/qX4IigksO+9956Wr5iyBUCBW1tb+YvOFQSadXFxEdgIXdLOzc0tLy8vISFB8R38aDMpKUnjl4TYAgoLC5FCLViwQNlX+021nVmXtGPY3OLrr79+5513/vrXvyrV5v79+9HvDrg3m/l+p6a/vz9dNRmLQLgy1XZmvdKutrYW3RQZGblu3Took8wJNvhW2LmlS5d+/vnnaNm+VxRPBfRhXV1dfHy8zBooBG1tbYiF0KDFodEf7UCLQ4cO3blz59ixY7B2v/zlL4ODg3FMraP8ik/IVIKCgtB+VlaWA5IP0Qt0ODo6ure3d9euXXQBDHS4tLS0vb3dijnQE+04wuF4zpw5cXFxDOttKyoqSH27nJwcSUu0SX27/v5+zrMg8kWm0t3djQYdk3wgyvnz5/HD0Q9paWlSfz4ZI3ghNGLla/qgHZ9wBOnp6ZwugmrXr1+HoQoLCyPVPOEjrLhdrprntWvXPvzwQ0F5DqT6pEgqxDks+fCrkdUib8NBTEwMOta6PpNqnidPnvTz8+vs7Jx2hsHWaWdOOIZn6vjYyILULk5MTORqF3t6evJrF9+8efPixYukdrGAcFw7xOCRjw5LPjjcsrIyUruYVCcmtYuhz6RjSe1i4NNPP2XY/YiI50S+o8Z2aWeRcAR8UycAqQ7L8Cq119TU8Cu1R0VFIRexHrVwBo+DI5OPVIflKrWDiOSJ/vLly0FBfEFk7V4+bJd2DDvY5ictmjpzEONHJ1dg8Kzfj4MAxEpJSSHHZDpdztyy7dKOGBXYGMF5K6ZOQZgbPIZ9L49DmbqpQKZ/7ZN2DMu8//73v++//z53RqSpkw9zg/fRRx8ZnGPY5TktLS2MvLee2jTtEEZcuHAB480xTxtTR8A3eLgH3Aliag1e62jjQITHHVAbPNulHTgXHx9fUVGBkf7pT38Kb6uZqSPgDB7xreAcdz+a3YMNgnvAigN7ox2fc8z3cR4SUo3XwMHgmUwmIh13gvtxcOZxHhbAAbWftUXaCThHMCNxlSAXNpjHeVjuI53BsznaWeSc7cDBmSdYwkTtZ22LdjbOOQKHZR7fwxJQ+1kbop0uOEfgmMwTeFjuJIXBsxXa6YhzBA7IPIvvPKLzszZBO91xjsChmGfuYQno/OzM006nnCNwHOY5OTlxrxOvrq7G3+joaO5fUlubYdrpmnMEDsK8WbNmcbt7SN0tOZt9ZpJ2dsA5AgdhnoKYMdrZDecIDOZJwszQzs44R2AwTzwk026YBfO9g0cKs2DBAoZ9bY3IB6Z2yTkCOuZ1dXUxbBVH8hoMUsvRjYV6t0qB7u7uiYmJsbGxy5cvM9/vFkDMR7FnTyztwJXGxsaqqipI9fDwwBlfX1/87e3tJdM5PT09gYGBAQEBGzdutLJ9xo45RyCSeWQbUUtLS319/euvv44zc+fOJTVrc3JyGLa6NDLEiIiIabfPqA1oxZkzZ86ePfvqq6/ilkA1Ly8v5vvdAo8ePRoZGQkNDd2yZYv4JGN62vX19eXm5n755ZchISFWtoxz/Zienv6HP/whJSXFnHx2zzkC68wj20j/8pe/vPnmm9DSwsJCQUeR1yMx32/HAu1cXV0PHDigbJkIMSDbWWBlwsPDcVdTTc6Njo5i6KEtUBWRe02s0Q7N7d27t7+/PzMzc9pyQPCwZPsM6Vb43JiYGK4HGYfhHMFUzIPeFhQUREZGfvXVV9NWMoCRI9tnYG8wqDAzUjcCU6OtrQ2GY+XKlWI2g4GOsSwwxHl5ecXFxfn5+dbrCkxJOzjyXbt2paWlWdzVZwXgH+4YNwHybdq0qbq6Gv3rUJwjEDAP2piUlEQmXaXO6cPONTc3w6KgNZg9+ZUirKOoqKi9vZ1iPxjZ4wj3mJGRgeiL2/JjDsu0Q8BRXl6OYI56sTyoBjWFrgQHB//pT386ePCgQ3GOgGMeBhJjEB0dLWfVIIJmb29vNILMQ6UyukQ3XFxcrO/ptw6EYaSuQGJiYklJicVE0wLtYKWuX7/e0NAgfykv9BJdv27duo8//tjROEeAXw3O+fv7YyQkFUS3CFIpIjk5GV6MH8AoAnAOnIaZUGRFLYJChIZo0OKuZCHtYJ+QFsghuwAw1HAQ0Hjw2O4Ln5sDYwl+INmXzzkOCJ527NgBj6RsTTTE8UhxFFzFjabGx8fRrHlp1B/QDqkTglbwQynBBGAeIhIQX0E26wXodNgPxZNQhEBoFqZUKTbDxSHuVNx3o0GkB2gceQL//DPaQS+RqyNuVcMmwdsixoS/1+YVCDYC+bvnpwKpgohQD/G7/FgIjSBxRGSlyL0JgMx9+fLlPj4+/Km3Z7SrrKxcv369ehEY+A7BO3fu1Oat6zMOqDF6nFsspDjQjSEhIRg1gSGhgHlJa2VhXpL7Ke3QR3DA6vURwyooYmHE1xgM9aTYDkAI0EJVHUN2HBQUBB8lRwqieURgKpW9J0DjR48e7erq4oKNp7TToI+AuLg4GDx0lt0bPA3UmGEN3ubNm+HK5WS1hw8fRuSt4F1ZBEQgbUByST4+pR1SrSNHjoi5nrxgj+59ZzB48OPavDRsZgHCLVy4UAPtCmNBTbvR0dHbt29TZDxS37MoeE3hc0T23bt3ReZE5q/KlAQ4Bdhbu6ddY2MjMk0NBJEHCQMDA3QPzWACQkNDpV5F90Jy/msKn6OWTQckX7///e9NJpN9z+GdPXtW8encqRAREVFXV0cnDl5OpocV7/f4rymcpB0yZ83e1ws/u2jRImTs2q+n0AzDw8MvvPCCZvGrp6dnTU0N3bU9PT2avfsFgiCOHE/S7sGDBxR9RB3kubi4wK1LvUpHwK9zdXWluJBzWJJ6FWOHEaQQh7znyZMnktwOd4cUt8p/R/wk7UZGRqTSjvPukt4WTwDa0XWTXgDa4TdKvUoQMInvVYwdRlCqOIa9z1deeUXSJdSDTgBxEOrm5jZJu7GxMamRFieVZBiSbgKyENtJEqcv4Nc5OztLukTQh5L6E6NIV1QZwQBZKK4ZIA5Cn9LOgK4B+zFnzhyKC2fPnk1nJqkBcRDKkNiO46A2soeGhjTLYGYE7u7ug4ODmol7+PAhXSgJ7/ztt98qfj9WAHHP5u0oYnw5sR1dBqMjUFgRQawiqVepMxh+jE9xuVTwM5intJMa43OTxhShJUUGoy/QWRH+PLykXoX3mDt3rlRxBPPmzcPl4qeaBZms1PuEOHI8SbugoKCcnBzxCxmIMLpcBt4cGYx9vycYCv3666/zn3yLBF2XNjQ07N69m+JChn2fU1NTk5VNDwLQ3SEBBEEcOZ6kneB5maqoq6uLjIxUW8qMIzw8/MyZMxpMicNzXblyxWLlOTHw9/eHxRFPOzlobm7mnog8zWT5z8tUxfnz50WuOdA1Nm7cePDgQfPF3IoDoxYYGEgdnGlmcQRrDp7SLi4ujmx1VFV2X18fgkoFdxXYLDCKq1atAidUXcfGsGt3yRpmaqSnp2uwCBIiIIj7+JR2CLY8PDzU7ia1V7HaFDIyMqDGqvYnxgujJjNQ1mARJEzduXPnYHS4M8+miw8fPow+grNXKZ0mBZfV1n7bAcZy5cqVMEXq+ZDs7GyZpo7RZNU3GocIPq+e0c7NzS0mJiY/P1+NXTYmkwm0rqioULxlW8a+ffuQW0CT1ZiKLy0t9fPzU2ROAAYvODi4u7tbjfgHzd64cQMawj/5g4djsLRqbMBk2Dq3yGJmtnKR9oDbOnbsWFRUVEtLi7I+RNntzGQfGjSkpqZGWQ0ZHh5OTU1Foi34+cJnsmQDJvpLweQfBjYgIEDtyh22CVijPXv2TLU5ng4IknJycizWTacGRhy+CBqi4C56uDg0iGbNo0Yh7dA14CaIL7NgB8HExERCQsLSpUvlb6rTLxDOYgDQpaQKkczWECIjXFGkVIgA8EV5eXkICU6dOiXfLw0MDGzfvh2hp8WmLKxAQdfgVyUlJfX29sIlU/885C/oa7SjuMvWHaDA7u7u8kcUsfnnn3+uuMvmABdXV1cHEyWzrhRiANhjNDWVy7a88Am/qqysDEErfITIQnl8gHDoIOTMCBPt+zmYeJARheVDegtlljpbASOHBCUkJGTaQoMyAaLA6MDXHT16NDc3V+rwkSpjDPvIzoppt7beDp4xLCwsMzMTuW1aWhq6bNrOglQo9KeffpqYmKhInQR7AkYUDqS2ttbb23v9+vViqq7CO4NwxcXFHh4eFAXn6EDqSsFixcbGQi6Mn5hpL9wnMpJ79+5NW1ORmbaILHgGs4d85M9//vPBgwddXV03b968fPlyJyen2bNnoxe4cs/oUJg3Z2dn5MKdnZ32vTFMDuA6oMxQTrih27dvh4aGenp6cmXH0ZMPHz4cHx+/fv16e3t7T08PQhQrtXvVw1oWhExbt27FPSNGx9DjX6+99hr+kiXNuM+bN28SQy6SoIzIktlQ02IWMGCNjY0wv+iXkZERfESKyrDlntF3YgqOGmDYGIY8iiRVf7my49DhefPmQbeh1StWrJiResUCbGRBClPjPkk571u3buHv4sWL8fc3v/lNcHBweXm5JM8mbVH7EhbkGPZ/7969sIWSWjDAB6n6O9N3MT24wtTkI0J2/JWTKdLvpQD94SmmqhJqwI5BKiDODO3gFx4/fgzyGfMjDgU4XERyDPtkgdriUNIOHhaRHMMS36CdQwGGBuaGHFAPPSXtONkgvhzWG9AduBrDciwOJe24VdSGn3UocB6WkWdxaGjHeVgCw886Djgvx8izODS048tmDD/rSBBU8ae2ODS0E+xTMvysg4DvYQmoLY5k2gk8LIHhZx0BAi/HyLA4kmlnLpsx/KxjwOJ7cugsjmTaWdwJbPhZu4e5hyWgsziSaefr67tixQocDA4OXr58OSYmhpw3lpzYN0ZHR/fv30+OyUvbf/e733H/kroERDLtuMIFXV1dQ0NDmhWGNjCzALEEYy1n6I2yigZmAAbtDMwADNoZmAFQ0m5gYODmzZuPHj1ChLdkyRIjn3AcdHd3kxK5cqoISKBdU1NTa2vr2bNn79+/D6r97Gc/Gx8fz8nJ6enp+e6773AmIiIiLCzM0bb+2z3IyvuWlhYyd+bj4/PkyZPnn38+NTW1o6ODYYv5BQcHr127Vvx2uOlpZzKZSktLi4qK1qxZExAQgPzFYuuwf3V1daAdjrOysow5PDtAX19fbm7u1atXQ0NDo6KiptorCVI2Njamp6evWrUqIyNDzG4ja7SbmJiorKwsLi6OiYn5z3/+Y92TwsjtYwH+5eXlFRQUiNm4ZsA2MTw8fODAgf7+/szMzGl35pJtPgzLv9jY2IULF8IHWp/Jm5J2MK3R0dFeXl5w4ZJCN/CvqqqKbNOFU3aQlxbbE8Ce7OzstLQ0jKOkCwn/6uvryfZqK5sXLdMOpAFt4VupY0ZY2vPnz6OFrVu3lpeXGzmHXoAhQ8QGe0E9ZIiv4OUSEhKGhoamqn1jgXakgAW8tfzyjpDq7u6OkBPRqME82wcsHP7Kr3eBsUYjaA2BlsWHGULaITID5xSsNgVL6+TkBH+tVDE2AyoBdo5hiyEr1SCaAvPQrLnN+wHtEM/Fx8fX1NQoa5lgcmFvk5OTNahcboAOytZp5ADmbdq0acGCBYLk8ge0gzc8cuSIGgUlECmCdqoW8jVADZiblJSUzs5ONRqvrq729vZGsMiP2Z7RDvmLi4uLetX74eMhfvv27cZqUFsDsk54Q5WCbzSLxiGCX7fkGe0UKfttBSB7SEhIZWWlI1f2tEH09fV9+eWXqtay2bZtG6nbxM0kP6VdfX39woUL1a5mBUsOgxcXF2cYPNuBNi8LgQgI4nLkp7SDA6Z+XZp4wOCtXLnSWP5uOzCZTFevXsXoqy3I39//3XffhbhnL/bEhy+++AJ2iKI5qS94DA4ONraZ2Q5gAjZs2KCB84GIN998E/kyGfrnZMrmvwVVDDZu3JiYmKjZq3MNWEdLSwsMgTay+BZnknYdHR2avUUdbFu8eHFvb68jvPDO9vGvf/2rsLBQG1mrV69+//33yfEk7cbGxrR8ckXxjngDKuH+/fuavckcgiCOHE/S7sGDBxSyJflWPgza2QiGh4dJ8WtJEIy7pPdpQxyEurm5TdJuZGREKu0gm5MnlX+QZdDOFoBRcHV1lXSJYNylvsMd4simWpq9FBTyDNggnJycnjx5oqVEiINQhjhZjoPayIYsT09PbWQZsILZs2fD0Um6hD9xQWF6IA5CGUI7jYMthJL+/v6aiTMwFfgxvkjIdHRcBkNDO0J5Ip4isaDLYAyoAS7GF/l9wTStJAryM5hJ2vn4+DQ0NEhaksSJJwfilcBkMt29e9dwsjYCPz+/zs5O8a8yFAy0JOMHQRBHjidpR/fkgJMnifKaPY0xIAZBQUE1NTXyXxwsBjBtUVFR5HiSdiBBYGCgNk/oT58+rcGaAwMigSA7JiZGvMWhdrIQcfHiRW7NwdMJlC1btoD1atMOEWR/fz/dmgMDaoC8dE/SIki6lAIiIIgj91Pawc9mZ2fzF+KpgaKiouTkZMPD2hQ0WAQJU1dcXMxfNP9suhicSE1NbW5uVkk2OP3ZZ5+B3Cq1b4AOGqz6RuMQYXkvxerVq11cXOrr61VytRkZGQcOHDBMnQ0CBg+5RVhYmBoTW4isqqqqGhsb+Sd/8HCsvLw8ICBg/vz5irvarKwsX19foySKbQJsKy0tjY6ORrKprF2Ae0WzaFxA6B/QDiKRWCDLRb6pIPFhQQcHB6UW1DCgJd54443du3eDIvJLAvCBBtGs+dpK4VIANze3Y8eOweQq9X56tAMdsvhaAQM2BaSVQ0NDW7dura6ulm/ziJ0LDg62WIDHwgoUsK2uri4+Ph48tVK0RwyQt+KvUYZCLyA1axBoyXR3iOfCw8P37NkzFX8sL3yCzYPghIQE+NzDhw9TLE4hxaoSExONMgD6AogC5pFpZLBQqtmDkUMkd/LkydraWivecsr1dqRoD9iDPMDPz++Pf/yjyOqwuARMRVKslJs2oDEwap2dnUVFRTiAv9q+fbuYPQ8mk+nUqVPFxcWRkZG43Pol0yzzJIXywFxSHXb9+vUI+xAhCpRgeHi4t7cXSTKyhzVr1hw5csTYoaNrgDSHDh3auXMnyDdv3rzf/va3iNI8PT3Nh7W7uxtDj/D9ypUr8GwgnBjvLGp18TYWAwMDra2tOTk5XV1djx8/njNnzqJFi1paWhh2/cyyZctwZ4WFhUYdO7sBCFTAoq2tDTYFqQapkU2cWF9fH8MuX/Ly8kIaICmCl7CofT4Lbi4bYeOdO3fUe6phwHawlgX3EQaIYflA3eD/ATSdxRwyRTxwAAAAAElFTkSuQmCC" alt="" name="图像1" width="210" height="181" align="bottom" border="0" />

  图中有两棵树,分别对应两个集合,其中第一个集合为 {a,b,c,d},代表元素是 a;第二个集合为 {e,f,g},代表元素是 e。

  树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。

  假设使用一个足够长的数组来存储树节点(很类似之前讲到的静态链表),即父节点是其自身:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYAAAABDCAIAAAAarkVGAAAj0UlEQVR4nO2da3BV5dXHtzPvTLFfGugMTdCRoGICjhQahQBylcAAoohcFSFTboopaLkEkJAKMTUQaCWQSsBWScI9BoI1A4lDgSglEbmIcqkVQSSJM2qYaTX2i+9v9vO6ezzn5Jz93DbvB/8fmJPDOfus/Txr/dd/PXvvZ/3Pd9995/yIH/EjfsSNwP+YOtCVK1f27NnT2tp6/Phx/hVvtmvXbtCgQQMGDLjvvvtM/ZAOLl68iJG8OHz4sPdmQkLCQBf33HPPjTPtv2hoaKipqfn222///ve/e28mJiZiISN511133UDbPNTW1tbX11+/fv3UqVPem//fjKyoqLhw4UJzc/P58+e9N5OTk4WRt9122w20TYBZxiEvu/jkk0+891NTUzHy/vvv/8UvfnHjrPs/MMsYyTAymE1NTd77PXv2HODiZz/7mfLBdQkI4954442SkpLGxsYpU6b85Cc/+c1vfgPviP+FiY4ePbpw4cKPP/54yZIlM2fO5AOav6gAxg4jX3rpJV5PnjyZf3Nycrz/bWlpwcgZM2bwIjc39/HHHw/eQud7Bn/55ZeTkpJGjBjBpIYaySkcOXKEU2BsV6xY8eCDD94oI8vKyl599dVu3br16dOHGB4zZkykkZwCbnCjjCTNvPLKK9u2bRs6dGhKSkqPHj0mTJjg/S+hjpHPP/98r169MJIgvyFGkmYYyddff33UqFGdO3eGbp544gnvfwn1qqqqZ555hv/Nysq6UamRNLN79+4333xz3LhxUOFDDz0USoinT58uLS196qmn+N8FCxaoEboWAa1bt46AGTJkSGFhYVsaZ9iwYY7rmnz4zjvvxNynn35ahzKlQIbJz8/fvn37yJEjCe+2MrMIFaLrhRdeWOIiSK6ExOGU6upqGJwpb2siH330Uf59//338/Lyfvvb3wbMlRi5ePHiQ4cOZWZmxjWyrq6uqKho5cqV2dnZ4p1ggJvNnj370qVLc+bMeffdd6PKBxhHjBs5adWqVbxYtGiR8NJgAD/OmjWLF9OmTWOIosYCRpIReVFeXs6LLl26kMWDLCPgR/G7EydOXL9+fdRYwEhimRCDSRlAeAAakhW/igSEfYzI4MGDeeGHTXCFgoKCZcuWbdy4kXH8/e9/H4BfEif8IpKHoPXDJgTVpk2bBFeSc/785z8HkB4pE8jG8+fPFwItLjBs586dgisZUhw0gPTIr2AklMf4+Pn8/S4YdjITXyTUA6h3RDosLi72ySYPuoAr16xZAxOhOGznRZEOKysrEWg+2eRxFwwg4UaFu3XrVtt5UWQaitYYCTsU2DPDBU4yfvx4aMinJwuoEBAzvW/fvhiqpy0wwTACrDlv3jyUMGlc4dd9gpCmqIabZSlZcCW2kUsx0p7KwB3JgZRUNTU1sqW+4EpyKUWE1QQujExISPCZaUIBM7722msYiV+KxGPJSGKG6oB06DPThEJwJWeXkZGh4C3+Qc5gHEiHZ86ckf2u4EpoaPjw4bt27bK3MMQA4vDoVp+ZJhSCK+HWESNGYKRPb5EmICgcpwxdxJUFluGXpFN0clvqThMcuXfv3lJMHAbmmEGEKIkfcrhB2wREYFP26yyUEC0YyXEgSqHYzYLARoFrruZgJAzLcSB0G7KXwGYYFdJhKPguCZ/joCttyF4COysrS5PgmIXOnTszkhs2bLAhe6kYEIMK6TAU+GFKSgr5oLS01I/slSMg2Id/jQQkB0GzYah/svQJ2GfgwIH6ygVmJA8g9yZNmmRW+gr2mTVrlr5yYehQo/Nd6BBuJAT75OXl6SsXjKTAEYrSrOyFfRjGzZs36ysXogUjBZublb2wDwWUEeUC7xDYnLJx2Qv7MIxGghEG51DIPdRQXKKUICBcnBGkhtIz779gmmF0OEhHT4Xh4YcfJmwMOhABA1ESPKg2IweEfRDSOTk5Bh0I6iE3ICpNibXm5uYxY8b4cSCfgL4ZQHIDxzQl1hCnU6dORbmYWmAi9ohA/Ac/NzU7dXV1zz33nMEFJk4WI8UFKVOzU1FRQYrlsKayrJC9VLVxZ8cvAVF/NjU1mc2xjkuWVIwEjxFe27hxY2pqqvFVGw545MgRaMjIkVesWIGLG1+1YQAZSdzdSAVB7YmdxnU+Fbe4c0RfsMDj1IbMuNnlbSKwpKQE8uXc9QULKpIERhCa1fgcDYkB+R49elSfMkg25C0jhwoFRjI7VLWx5YUvAsLElStX7t+/35BtPwCRM2jQIMhSU+qTD8mxjKMpw0JB5GCe/t1rEMSpU6cKCgpMGRYKkhjDyAhoujtUm5CQYOMuHlwcBUQFcfDgQU13X7t2LW5jY2Eb3iEjonmpbTUPtXjxYuoGG1cAYXDkJMfX1wRUncXFxTauADI7ceWFLwLCxHXr1tlbe6espWJEsymPAvmQhFBWVmbpIqUXOWhp5Z+Ax8mHlnjcCYmcnTt3Kh8EHsenLfG4465iIACRVzosDI+TVw8cOGDQsFCgT/FGEvjTTz+tfBB43HHlszm7fgAq2UmTJlGa6KQKvJqiwd7tJgsWLKBajCEv4hMQZ0g+tHpHDCmCRAGdK1z8E9iyZcuQIUOsPgHACJJySbzK1SIkPn36dKs31+OLEJxOtZiTkwM7WL3ZhKjWrBbhcSLHrFVhQPIjeIkcNaciI4q6xrhhoUCYUy3imWpOhZHZ2dmfffaZccM84EhFRUUxqsX4BES1SbFtwbYfAAXEhKER1IYS5hIPeVkFOQenhNQV4pPJ3rZt29mzZ20YFoqsrCzsVCMgxv+dd97REVA+gUfhl2oE1NDQcPPNN9u+/ZIpJltAc2pKjbTdt29f209ycXzyLp6vptRI27iK7TsbYfBu3boxIFFvwohDQO+//35jY2MAN6ozCk8++SS1qMJ1HM6NMwzgAUjme+TIkRR6CtdxmOzHHnssgGdQiMykpKTa2lqFWUOjLVmyxIZVYUCpISQp9xRmrbCwcNGiRTasCsPMmTPvvPNO7FSYNWjLtkYTQAzee++9agT04osvvvvuu8ZNisTChQsJGRUCItjIA3asCgciiJhRIKDS0tLQB/msYsKECatWrVIgoNdeey0YjwQTJ07cvXu3LAGh0SorK21XDR4mT55M6patZ9FoJ0+e3Lp1qyWrQkFSHDVqFOlNVk6Sth03E9ix6wcgKXbv3l2hnuW8+vXrF8zT9mIoGJbIMYlDQNXV1QGUNgLiYsGVK1dkrxowlMF4pOOuBJ04cYJYlRKuhA1CMrBnmqkTFXj8zJkzSKfA9n8YOHAgVC5LQEQapU1gzwlj5JEjR2QJqKamBqVsyaRIDBo0CCNlCQgjhw8fbsmkSFAqYqQcAV2/fv3atWtB7u2ClWRgqfmGVu++++7APJIfSktLa2hokJpvPk+2sWdVGNSovL6+Pj093ZpR4VCjcozs3bu3PavCoEblx48fD0ySO6pUfuzYMWpMSyZFgpGkUoksFWMRECU6sW3TqnCkpKTwo1Jf4fPdunWzZE9UpKamXrhwQYqAMJJv2TMpEowJPypFQHy+R48e9kwKA7zTqVOny5cvS2W48+fPZ2Rk2LMqDAzgZ599JsuS586dCzJtd+3a9cMPP5T91gcffBCkkfwWwxL5fiwCQpP37NnTlkXR0Llz56qqKqmvYOQvf/lLS/ZEBUYiLqS+cvr06YceesiSPVGRnJxMbEt95dSpU1OnTrVkT1R06dKFkZQKg/feey/g3bnuuOMOKZaErf75z38GGdtUzV9++aUUS5JsOK8gdwckahiWyPfjlGAJCQm2LIoGhjJ0z0c/aGlpCXhvTYxEAUl9BSMD24NNACObm5ulvvLVV18FbGRiYqKskURawD6ZlJT0+eef+ycU5rpDhw5WTYrELbfcwkj6DwRCu3379lZNCgNk9/XXX0e+H4uAvEjj3P7xj38EsDsXP4RTSn3FizRyKS8C2DVOwUgv0sSGNQGkR35Otp7yIq2urg5VH8BqNMlG9le8SHvjjTeoxQLI4Y2NjR07dvT/ec7o6tWr4nVFRUUwG0JSJ0qNJB/mvBxXr9XU1NyozXOduAR07dq1devW5efn9+/fPwACam1t9faT9gmMbGhoyM3NLSwsnDlzZgAEhJGyfg8BffTRR/Pnz1+/fv3atWut7sQmoDCSGHn27NmioqJdu3bt2bMngMhRMBKWfOedd8TTZPX19cFMt6yRt956a1VVVV5eHp6pQLIKQFxI+SQmwVmQOK7Ii3//+9/2bBMgbTAske/HIiDc8a233sJKXr/99tu2TAsBxTa1otRXTpw4UVpaKtTdsWPH7Nj1A2DkwIED/X+eJHPy5ElGUhh5/Phxa6b9F5988onUhRg0+fnz53fs2PGf//zHcS82BUBAly5dkiqfceJPP/10ypQp4s8ACIi5o+iTYhCU+L/+9a+HH35Y/AkH2dYX/CKKVeorFy9e5NS8hgJR79AxC8Q1ySPy/egEJLZQIsl473zxxRdq961K4fDhw6GtIGKDSgH+ZoK9d3gte8FCAYcOHXruued8flgkGQpY7x0SuB27/gsGAV72H5yvvPLK7373O69wAKEdgSxBLOT7JCDOaOPGjShx/NB7EwLSeVjUD/CotLQ0nx4FiVMuoMRDFzsCIKCjR48OGTLE54dFBwSUeOibjKRtAjpy5EhUI6MQEDOdlZUV+T6sZJuACBufA5Gdnb169erI98+cOWM1KzJ/pESfYTNp0iTKmbA3iXPlR958glRx++23+wkbsTsazhH2fgB36DNTvXr18vNJxpw5DSVxAXSlBbt+gNOnT/u8EMyYP/DAA6EkLhDaN80SGEmf630Y2a9fv1AS945gwa4fAB+LKsmjENDMmTPRPpGXw23L8tra2v79+/u8ELNs2TKUSKj8EbAty/fs2eP/Psk1a9YQJJGRYzsrYqRofxYXkNSGDRtITWFOSQ63Lct37949ceJEP5/EJYqLiylqwi6jYCHcZPXKHfkDRePnk+TmF198MfI+hgDWLrZt2+YzYWDk888/HykvbK9dME0I/6iPK0QhIJxy3759c+bMKSkpCX3fNpdv3rxZ9EvyA9wO5YkHhxGlbS7ftGmT/0e6EEqi3UIYUWKkPQJC1Gzfvt3/I12wzHvvvTds2LAwosRIewSEBsTpwxwsBjCPqjCSKOEge9dGOPg333zjP5+RmRC2YUSJwQpPF/mH7CNdFK0JCQmzZ88ONfKDDz6wunZRVlb22GOPyW3HQaR17tw5dLGjrq4u7i+Jz1y+fLmlpUXcH4gT+8lRChtBRCXKuFzOQAs6EHcYpKSkOO5jAX5GX2EjiKhEGXcdmowhHmikBMBdxMK8z0hT2AgiKlGiJWNrPXFzhvgkFvKLjKHPcC0vLxd9dP0bGZUo+enYw3LFheOWANQpDCYz4nMGt2zZgnf5t9BpgygZ1dgERGX0+eeft7a2igdN2rVr17FjR5/LHQq75QiiRCN7RkJGcdcuhN4krvmkuAhzmws/vxhjt5xYV8Eoc3AsT1W2JcsZvpqaGsQqcyweb0tOTmamRcidOHGiU6dOI0eOHD9+fIwzXLx48R//+Ec/JxOGMKJsS5bz/v79+/fu3QvZC5cVz0aINRp48+677x47dqzYDLit31q4cKFPQR6KSKJsS5bjqcxTdXX1tWvX0tLSHLf9NvMtuoZTFzPxcFmMXbLEPljiwqUUIomyLSqnUmYkMRJ10L17d95JT0/nW01NTYQQPvCQC4xsyzthrldffVXhsftIooxK5eLeFox88803SRhdunRx3Cc2S0tLiZ+vvvoKH0CBYiR80RZT4zBI/qjrjLERSZRR1y7wUkaScfvrX/9KgCQlJcE7ffr0KSoqYhgbGxvxgdGjRwsj20rhHMH5vvmwFPjKoUOHRo0a5S1aRV27YKaEkXgUAdK+fXviGmEhOspeunQJH+AgRE2Me7KoGGJsFhjnafgwVRkmy8XFMgYLfonRmEkwFJ9k7vPz8yOrD04Sz1BeYAojyjBZLi6W8QJ+idHmQTDUjBkzcNmozaH4LnSgvMAUSpSRslxcLMMLoYAYHSkFQ0HlBFVeXl7kuTC8mZmZaoI/jCgjZbm4WParX/2KqIjRC1wwVEFBQa9evdasWRP5MZJNbm6u2tpNGFGGrUOLi2V/+MMfqEowcuXKlVH5xWOoJUuWjBs3Dv+J/FhWVhYurVaVhBFl2NoF1IORf/rTn4YOHYqR69evjzoUHkM988wzv/71r3GPsI9xFrypkGwEcB4SIcEotHbY2oXoD7xt2zb45YknnghrS+U9+CoYSnSIf/bZZ6nvwkaMD8Te4Tf+joihqhIrhSznuLjRuXPnsDJuaXCXC4yDiXJycuB4ptYLHtE5AIeIa0kMhBIlZYswiZ9btGgR+cRPe5l7XDCyOM3y5cth+tDggS8Yx8g1bymEEiUjKQ4umlwnJibGaLju4T4XxDYfhiuJcFK055cc6m9/+5tmjyOPKBlJBlCMGz/HHOEDbTVcD8UwFwwXscGLRx55JHRPr4qKCuf7FvJqCCVKVIYneDny0qVLqezOnj0bm904gug16risOmDAAFg7dKNLvHrw4ME6VzNCiZIiwHufn2NkKH8++uij2OzGER51IVgVY+bPnx9624H+jvd8FyMhQXRrKJWTxnbs2MEIf/rpp7GPgDOIhqjiFgS8Jazr+uzZs3k/xnT42pTeU5XINscVC3h/dna2bKssaGjnzp1IEtIL1IAHiBZ9xcXF+pelPaJkNJknYgahqNB+i5k+cOAAweM1FGZwSQJID/1VOo8omXhOv7y8nNyi0NVTBDlfJ80KeoUiRfc7TQudEKIUG7jgQJCaz07hoRBBzhh6fTLxHBJ+6P1lyvCIUowkoYiI5rWsI+HJnOnatWu9Hpl4Duer3xIjlCjFLSzz5s1T6MTNcWB/7IQXvB6Z4kqIfoc1zpfpIAY5d/zccTtQUAnK9lbhw9T+c+fOhRZxG9GrA51L5Rs7AP32BROqkkmCGlGPyFdlykCeiHMmwV64cIEsYepChiDKWbNm4fTiTgLla7T4NIkR28io1dXVEJmpe6AEUVJAweDEjE6bDegMIyFHCBeP3LBhg6nbiwRR7t27d/r06cnJyTrRiG2wJGzO+RKKMJGpqy2CKOvr69HUzJRyNGIPh8pwQVEGtRnhcQFBlMw46QGfV24WgCejfEV7eEgN9za1CR+njyxA8sO8pAedlpn4jNj5c8SIEcx4U1NT3N2UJDqjMgRUemRC/aZO4pyffPLJS5cuKXfCiAqIEtKF2vQzmGgoPHbs2C5dupjdFRuibN++PbOl3yCM82U60tPTyQ1mr5pzymiftrbylYLok4nKQ7CYvSCNlw8dOpRh1M9hoj08x4Eizd5bBAVj5Msvv6x/h5poD094ozLMXjVnaiiWt2/frp9o8RlCBl0ZdQOgMEgQEAroL3/5i07GDgNTgnI22KvXcVdzT58+baqvA2eK/KFiUtvjvS0g0HBxU4+kYiQJFgJiggzehIlgGT16tKlbTzlfsS5LjWyQg9AUS5cuNaWgMayurk6zRV0YxCIDJYmpqSHNkFwhNYORKBYZjLCPAISL2vXTos4vAXlLDGZ5d/Xq1YjnlJQUIz5Epb1mzRojSwyhQOsS3ninkemBy7BQX6CFgknBSEZSLLXoH5Cs0NraavZJK0K6rKwMRzfVKD03N7dPnz5mb+lk9NB9Yk3EiKsvXrwY5zF7tyRcNtuF7CJsW+B8DS4yCDAvFCLMUewqzC8BkRZwSuNPMIlW3AMGDBAb5egcilRDujbe4tpxI2fDhg1Iyvr6es1DNTc3z507V1z4NAumprCwMG4rbj/APOpi/ZONhFiIBfqRg9Q9f/68jRZmkAXnnp+fr7AbdBgwsqmpSb97ciRwdaowI9UDejw1NdVG6y00ftzqwRcBMY4UdZZuzCdypkyZwiholiRbtmyhiLX0kCfn3q1bN/39pciuVJ2W7nknMSYmJmr26gV5eXkrVqwwZVUYGMCCggL9B81Wrlxpr80R0g/zSBU67kRGRI+TugwaFoply5aRucmLOu5E8UWy0bwJJgbwJShSl4CsTrbjDiXzLa68qB2Bybba0dxxq0Xmm9jW6Q1fWVlpQ/54WL58OfOtQ0CYd+nSJavPysJu+KWOeLGaER1XmJMnyBY6VwnIiOnp6faMJFjIuPyKTqWM0JszZ469vRk4fWYqRlL01Rve6mQ77nxnZmbCccpt163KHwGvDa7ylVSr8kcg7nzHhVX5I4BtpDQdEWQ7IzrunhCYhypXdioyonhUwh4wj6SIqWpORdpmGK32hnfiJcX4BLR///4AOjqMd6FMQFVVVf53MlPGhAkTioqKlAkI+WPbIwGTxZSpERAe+dZbbwXQ5XHs2LEYqUZAV65caWlpCaA3PPmG+VKb7oaGhqSkJNvtEiBH8o1slzoPJKrRo0fb3sCPmWK+2toSID4BVVRUKDySJ4u77rqrtbVVbeMC6tgTJ074nIObbrqJf7/77jtpE93mapMnT1bbuICEn5CQEEADD3FbsNrdVTU1NQ888ICaR0oN7JgxY8iKavkG5kLtKnxRFhhZWlqqRkCM5IgRIxS+KIbR8T2SIt+oEdDBgweDaY7KfGFk1FIxDgHV1dWlpaUF060lhpWxAZH7XxtmXr05lgWRSXyqdRHg1Ej7ar8rBSaLKVNoFu7oqV2pgY2dFWMjGLULMjIyMjMz1fLN3r17FYpEBlDwjv+RhCWHDRumtlYVjLZwXCNXrVqlQkCXL19OTk62YlQEEEFq24kpbGWvjNTUVNnerQKyW9nrQHQlVCAg2a3sdSC6EioQkOxW9sqAdzp06CDVb8uDZt9R/wod2yK33PQDzuvmm28ORltgJLMW9b/iE5BsbMtqSA8KXQkF1GJbzc6OHTvKtkUVUIttNSOZMtm2qAIKsa0sJ5VZknjTMVJqJNVY8vr168S2lG7yLFRYIujatauCkW21qYiBsLk2wpJxCEi2v52nIcNe+4EyASm0XlK2MzExUe0OPdn+do6GkYyGmpaU7W8XZpUUGSm0RXXabi8VA5FGSk23mpGdOnWS+opXeSmsTsIjCjKNr0gRkE5oO26vtKi9GOIQEIW6VCdc2Qo2FF63RlkoND5WW4R2NFhStvFx2BxLGdyuXbvW1lYJ41x8++23jlt3yH5RDfyQgpFqPYWVZZraSCqICx1gpJg7KSg0+NUBkjCqkXEICBNl401hIU0AGSl2z5SFWppSg/KimGh8HECTTEc+bQjACHiJ7T4THvghhbUV0a1X9lvK+UYhtzkxlzxsQDa3CVCni61+fSL0IoPCeH755ZdRjYxDQMw3YeP/Z9Q0pIAyJQdJQMpGCp1s++4VAWWmo3DAyGAIiMTWu3dv2W9h2zfffBNA+0kBtcbKovGxDXuiQqG6d9zVTKmCQye0mS9mTZGARPeIAMBkq8U2RgZJQGqXYGRZUiQctaqbkVS7BCNkmtp3ZQWvctP0W265RXkWHMmRJEQVjAxYS169elWNJaW0ZNhtFlJkxHwxa1H/Kw4BiR2I/f9SmJVSk+21+5AFibSoqEjqK8pDeerUKa+jthQwMm6jmzAoi95jx44tWLBAzj4X6enpcRvdhCLMwptc+DGVlPjhhx+q6cG+ffvGbXTTlpGOzEgSNuRtNaZLS0uT6lmmfBWMoVCLGsixQ4cO/i+f6azlYySzFvW/4hCQwg3KyjpN+bYo2RuUlS2UuuU6DBkZGVC57M4MCqYyWUyZmorByFWrVkltS6C2Uo5Hdu/eXU0gDB8+/ODBg1LbEqjNeG1t7ahRoxS+6MjfoKzsk8q3XDsat/7KIsYt1/EfxQjGSp1brnVuUJaC1C3XYYDBExISbPc7dvSeVCBgYNgAagedW651njWRQlVVlfJtmTo3KEtB7ZZrgRg3KEdCpwSLoS3iE9DUqVNnzJhhm4D8dwqPChyltLTUNgHt2rVLtgtlKKZPn15WVmbbKcWu4MpfZ64x0up0o1UrKyuV906BHMk3+tsexQb118mTJ5WfyyXfJCUlmd0kNxJiaxfllEa+oRCOentOVKjJNGaK+WorpcUnIP0dHuKCIaiurtZ5LEV/h4e44OCNjY06G8fp7/AQF/p7p2ju8OAH+nun6G97FBf6e6csWrSosLDQxp6NHvT3TlmyZInmtkdxEXvvFF8bktme73nz5jEKmh6vv81VbDACmnvQGNnmKjb0N8oxss1VDBjZOs52UjSydRy2ocrtGWlk6zhmuXfv3vYyd9yM6LcxoZENSaMCmdrU1KQ/SRxhzZo1lkQv584I6E8SygLzmHUbj1OWl5f36tVL30hEUEZGBqW3jZWgtWvXZmZm6mtAkmJWVlaMluQ6IJnl5ubqH9mqkQsXLiSZ6R8nPz8fO812SRAg2ZARqehjfMbvpvQlJSWiM4TZ8CbVMI4kCiNHq6qqYrL37NljNrwvXry4fv160YxcEzii6LlqsPGLAMy7detWI0bCDsgo0VbYbOQYbJoEz1LjTJs2zbjm3bhxY0JCgvK2c6HASCxcvHix8X3ps7OzTTXbGDZsGIIULjPVJ8oD5w6Vx74g65eAjDd+cb5vmUSdbOqAxhu/OO6ld7QApGbqgMYbvzgWmiYZb/ziWGia5LPxixSMN00STcwhNYMlrfGmSQzgpEmTzFaLPpsmSTQmJDFu2LCB8N68ebN+CyECmyAkiZmVVBiWk5MDUUKX+jqfwJ41axbzbVZSkbguX77M6aMr9XmNIIQijTdNoty+cOHC/PnzV69erc9rCDQhdc1KKpL2nDlzKCKUN/MNBRFYVFRksC+zQEFBAeHtuAsu+kdjog32ZfYgmt+J3lb6R2NG/PRldqQIyHElJexDTL7wwgs68k/EDELAbMM2ASQlUQ0HQZc6CyLEjOi5bmN9DoUvjGQ8ddiNmEFWGK86BYhqUYvhnTpEWVFRAdUS2DYu/23atAl3nz59Oj+hw26IlCNHjmCkjZUv6kR0EFxJLa9jJAdB+zAdxheVOCB1A5r3zJkzOooSCuMgKSkpPm/UkiMgx5UYGIpTpqam4qCyLoV9a9euPXDggKWYEUBVkWwRa4MHDyZJyroU6gyfPnXqlPGVmlCIPt/jx4+fPHkyTCfrUs3NzRTYLS0tBuvNSFBB4EwDBgxACin0wENCInLbtWtnfDkpFPghHMekM2sKRQS1IeqsZ8+eVi+Zo4PKy8uHDx+OQle4maOurg5Phmft3aLFBFFxIwtGjBiRl5enUJqQDpkLii//MkqagBx3qQUGITfil5mZmfilHxqCesRteHzFaswIwG4oVdIa40jw+LymA/VwXqJp/cqVKwNoGADHMeW8YNogIz+/CPUUFxdv376drxhZK40NVCpGEts9evTw71tQD4NfWVnJ2dm+QdRxC0YmGrJDD/qPcJQ4Wv7cuXOWxHgYmCzGcPny5RjpP8JR4nwY4WNJjIcBmuvduzeMnJiYuGrVKp+LLbW1tXxY9MWUEhYqBCQA7xDVyJl77703KSmJNI7dkbNIeqmvr4cLsGzmzJlHjx4NZk8cx2V0RhM7CZ477rgjLS2NKhcjIyeeOcZIaPHEiRNkGP4M5jlmx2VzFO/cuXORM2hXYpUkiZGRrkYOxMgdO3Y0NjY+++yz+s2s/YMpe+mll0S4Tps2DaLESIYxzDvJMQwdbAXvEDCQuNr+2WrA75EwIlzxRihJGBkWD+QYz0ikGZRqcKE9LpjWffv2MZVE+Mcffzxu3LiMjAyMDAsKcoww8vXXX7/99tvVRJMyiOLDhw+Ly7XM4yOPPCKMDAsKcgxGEtrIz/79+xcWFiqIJnUCctwIX+aCYKCkggLFNY6uXbsmJCRgnONWQ3379qUasqpvY4BRK3DBrO/fv58in1Lf+f4GdnGz2cCBA9PT05nmANJgVOB/m1ww67gdL7zRo8gS++kSThgZTBqMCuiGWC0pKcFIJlp0WHbc0SOWrl69+tOf/pQBRMDjDPqXKdTAiBHhsAxGklGWLl3qjR7Z5Ysvvvj5z39OtPAnSTuYze0jISIclsHI0tLSp556yhs9vPTrr7++9dZb+/Xrh5EKqxym8KALWIaoKSoqevvtt8Xokci9MCe0MXL16tXKCVuLgDzc48L7E6PxgBsVJ23hfhfenyI536g4aQti1r0/iXCm9kbFSVSQdR514b0jNse4UXESFQza4y68dwhsHDIwYesHjNgMF+JPoR8h0MCErR8ws0+7EH8S1/jkgQMHTB3/fwFWYP1/17mdKgAAAABJRU5ErkJggg==" alt="" name="图像2" width="384" height="67" align="bottom" border="0" />

  接下来,就是find 操作了,如果每次都沿着父节点向上查找,那时间复杂度就是树的高度,完全不可能达到常数级。这里需要应用一种非常简单而有效的策略——路径压缩。

 优化:

  路径压缩,就是在每次查找时,令查找路径上的每个节点都直接指向根节点,如图所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjUAAADtCAIAAADIhROkAAAx10lEQVR4nO2dfVBTV/rH05ntgJ2dAdcZhdYBsaNrnUGtLbZ2wdYKWGsAEUp1EepuBNsCspOiWBSUF+0iyAwqzgpkVl6sEqGtENsKuG4B2y6prZodt8JslYwKcdet2T+UzOyOv+eXu03TJIT7bl6+nz+Y5Cb3nEtycz7nOa8/e/DggQIAAADwMH72sC8AeDRms7m9vd1kMo2MjFy/ft12fN68ecuWLYuOjp4xY8bDuzoAgC8DPwHX9Pb2trS0/OlPf1q7di1JiGyUkZFhe/Xq1audnZ2/+93vXnjhhZ07d0ZGRj7ESwUA+CTwE3CEzKRWqyMiIjIzM+vr6wMCApzfQ5GTSqWiBzqdjh7Qm/Py8uig7BcLAPBZ4CfwI2azedu2bWNjY+3t7XPnzmVzitIKWaq8vJyearXaoKAgiS8TAOAXwE/gf1DY9Pbbb+/atSs9PZ3ruYylBgYG4uLiNBoNmvsAAMKBn8D/Q3JqaGjQ6/VCop/o6GgKvLKysvLy8khXIl4eAMAPgZ/A/+TU3NzssquJE2FhYVqtNjs7e2RkJCcnR5TLAwD4J/CTv9PR0UFGEUVODBSBtbW1bd68ua6uDooCAPAGfvJrhoaGKisr+/v7xZKTjQMHDsTExMTFxbEcZwEAAA7AT/6LxWLJysrSaDSiy4mgNCllSr+7u1uK9AEAPg/85L+UlJSkpaVJN9aOUk5KStq7d29paalEWQAAfBj4yU8xGAznzp0bHByUNBe1Wr1y5cqBgQFM3QUAcAV+8lOqq6sLCwtlyKiioqKgoOCzzz6TIS8AgC8BP/kjJpPpiy++qK+vlyGvqKio+/fvU7iGSbsAAE7AT/6IRqPZuHGjbMMWNm/e3NjYWFtbK092AADfAH7yR06cONHe3i5bdnFxcZWVlfATAIAT8JPfYbFY/v73v8s5LSksLCwwMHBoaAhzoQAA7IGf/I7Lly8/++yzMme6dOlSvV4PPwEA2AM/+R3kp0WLFsmcaUhIiMlkkjlTAIBXAz/5HeQJ+TdlDwsLIy/KnCkAwKuBn/wai8WCxYcAAJ4J/OR3hIeH9/X1mc3mvXv3Xr9+va2tTYZMH0rQBgDwauAnvyMoKOjrr79+8skn79y5M3PmTHkypUAN+74DADgBP/kXAwMD27Zt+9vf/sY8vXHjhtFoDAsLkzrfL7/8sri4WOpcAAC+BPzkL5hMJjJTc3Ozw/HLly9L7ScKni5cuBAVFSVpLgAAHwN+8hdqamqc5UTo9XqlUilp1pTFM888g4EYAABOwE/+QmVlJcVJubm5DscvXrwoddYNDQ3Z2dlS5wIA8DHgJz8iJycnJCQkMzPz3r17toPnz5+XNFM510oHAPgS8JN/kZKSQlHUqlWr7ty5wxyhB+5XxtPpdMzU2kuXLt29ezc4OHjhwoX0dMGCBXFxcZO22tXU1OTn56NxDwDAFfjJ74iKivr888+VSuXw8DBzxGAwOPupo6Ojs7Pz9OnTK1asYISUkZFBciJFMbpqaWnZuHHj6tWrExMTSXsu8yLznTt3rr+/X8p/CADgm8BP/gjZiJyRkJCg1+vp6eDgoL1gKGAqKip6+umnSTwHDhxwnrdkG09hsVjozaSxd99997333nO2VF5eHsVPCJ4AADyAn/yUGTNmkKLS0tLILrYhEhTubNiwISIior29nc1a4ySeFCtGo7G4uLiyslKj0dj2ya2rq1u0aFF0dLR0/wUAwIeBn/wXssupU6fy8/MbGxsV1qm7O3bssBcMe8LCwpqamgwGQ25u7tatWynA6u3t7e7upvQluHAAgF8AP/k7tbW14eHhZWVl58+fp1hKyCpEJDZyUmZm5hdffEG2o8ciXicAwN+An8D/r8h39erVM2fOCE+KYrK2trZXXnll5cqV6HYCAAgBfvJ3KNChsEmr1YqY5qeffvr666/rdDqpV6YAAPgw8JNfYzQa1Wp1T0+P6LFOc3NzfHx8eHg4j94sAABQwE9+TmpqqkajkWLnCxLeoUOHVCrV4OCg6IkDADwTs9lsMBiYWZJLliwJDAycM2cO773f4Cf/RafTRURESBffUMqUPlr5APB5mOn8zc3N06ZNe+aZZ5hVZg4ePDg+Pn7lypWpU6cuX778nXfe4bpVAvzkv5SVlVHwJGkWVVVVJCc2yyABALwOk8m0d+/eY8eOMevINDU1uXzb0NBQf39/bGwsWWrHjh3sLQU/+Sm9vb2hoaFSdw7Rjfj0009TCDXRAkgAAC+FtFRZWZmfn081Xfd9BHOtqFQqOoWTpeAnP+XkyZNpaWkyZES1Kgr84ScAfAaKh7KysubNm0dREafe63QrZKnU1NSamppJF5eBn/yUjz/+mGo9MmSkVCo3b95ssVjQxAeAD8AsE1NdXc17R2xSFBULaVYoqHLzTvjJHxkYGJg/fz7vQTWcIC2tWLGip6cHoyQA8HZITgUFBQIXmlFY1wQ4c+ZMvpXa2tqJ3gY/+SMjIyOzZs2SLbt58+YNDQ3Jlh0AQAr0ev3OnTu1Wq1YM1LITBqNJikpidJ02b4CP/kj5Kfw8HCuZz3yyCO2xw8ePGB/4vTp041GI9fsAACeA1Uxc3Jyenp6xJ0uqVKpTCbT/v37i4qKnF+Fn/wRuiEWLFjA6RSSk72THJ66JyQkBLN0AfBeLBZLXl5eXV2dFHP5yUwvvvhiXFycc4cW/OSPjI+PBwYGcjqFsZF9CMWeGTNmjI2N8TgRAOAJUHxDCuE9IGJSWlpalEqlXq93aOWDn/wRkhMpiutZ9jETJ1HJ3N0FABARg8Hw0UcfSdoEEhYWVlhYuGXLliNHjtgfh5/8EQpoTCYTp1M4Neg5QHmFhITwOxcA8HCpqKgoKSmROpf09PTm5uaBgQH7SVHwkz8SHh7e19cnW3bkJ67rbgEAPAGj0fjNN9+0tbXJkFdeXt7BgwfhJ3+H/HT9+nVOp1Dw5NCmxz6i+vbbb+Pi4jhlBwDwBOrq6vLz8+XJS6lUqtVqMqKtOgs/+SNUQ7ly5QqFNZym6PJr3zObzV9//XVMTAyPcwEADxGLxfL+++//9a9/lS3H5OTkrq6unJwc5in85KesXbtWp9O5X1xEFHp7e19++WUsbgSA1zE0NBQaGirFmPKJiIuLO3jwIPzk77z22mvl5eUy+Emr1WZkZEidCwBAdAYHB5cuXSpnjjExMUlJSban8JOfEh0d/f333xsMBkm32KD0r127hpX3APBGKH6aO3eunDkGBAQ88cQTti4o+Ml/KSkpqaiokHRkjjwjUwEAUvBQRjaFhobaRvzCT/4LhTUtLS3S7b+O4AkAr4bHQjPCoRwtFgvzGH7ya6qqqjIyMqKiokTfa8NsNufm5ra2toqbLABANoKDg+/evUsPqBZLjyfdTlB04Ce/hoLo6urqzMzMzs5OEYfYUfUnOzu7uLhY5sZrAICIkJOuXr3a0NBA5cOePXvk8dPo6Oj06dOZx/CTv0PB029+85v169cfP35cFEWRnLZs2ZKYmBgbGys8NQDAQ8FsNn/77bf19fXM00uXLsmT761bt2zNOfCTX0MuaWxsbGpqUqvVZJTm5maBDX10T1M0lpaWlp6eLtZFAgBkRqPR7N69+8aNG7YjZ8+elSFfg8Ewe/Zs24wr+MlPYcz0+9//nm7BQ4cOrVu37sknnySvCIniBwYGduzYIVs7AABAdKiKGRcXp9frHY7fuXPHfuUhiejr61u+fLntKfzkd9ibiZ7OnDlz06ZNCmtDX0tLS1ZWFj2urq7mNC+Kaj0VFRV3795taGhAnxMA3gvFLnv37k1KSrp3757DS5cvX5baT1qtlgof21P4yY9wMBPD9u3bbd1OdPOdOXOGwiCVSjV16lQKp5RKpZsWP5PJ1NvbS7fU6OhoSUkJhpID4APExsZ++eWXFMdQzGR/nIIqSX/jVM29f/++/S6I8JNf4NJMCrvgyZ7o6OjBwUGy1MmTJ3fv3j179uxFixaRpQIDA5csWUIvjY+Pk5kuXrz43Xffvfrqq3l5eRgKAYAvERkZ+fXXX5ONyBm2gyQtNufSKWazmXlMsmE/6urQoUMOa6XDT76Pc1enDfvgyYFoK7W1tVRporiehET3XHl5+fPPP0+nLFiwYMOGDdLt9wwAeLiEhYX19/cnJiba9oq7cOGCy3dS9Ven03V3d3d0dFDIRcXC1KlTmZeomnvv3j068sYbbyQkJLhpHiSrffvttwcOHLA/CD/5PuHh4f/617+cj7sMnpyJsiLBdQEAPJqgoCCyTnZ2dnNzs8I6RMJhRT6qttbU1FANePXq1fHx8fv27XO52Dm5p7W1NTY2NjQ0tLi42GVzS25ubnV1tUN1GX7yfehuOHXqlHOHp5vgCQAAFNYFW5uamkJCQsg9CqtpGD+Zzea6urqjR4/m5+ffvHnTfUkSGRlZaUWv11dUVFRVVdFf+1ovJfX8888714PhJ7+AFNXQ0JCZmfnf//6XOcIyeAIAAFJLWFgYhTiDg4MpKSkURWVlZa1cuZJ0xamOSwaiuvLAwEBBQUFaWhqzzxM9pShNq9U6vx9+8guMRiNVgihIp7uKiaIQPAEA2EMuCQ8PP3jwIDPNUchMkujo6M8++6ywsJBiLyqRKLWJ1leDn3wfkhPdBHQ/UQ1o+vTpSUlJv/jFLxA8AQA4oVQqh4eHq6qqSCfCN9WlmOwPf/jDK6+8cu7cuYlSg598HHs5KX7oixoZGUHwBADghF6v//TTT0VcS/rNN9989NFHDx06VFtb6/IN8JMv4yAnBsxVAgBwhQqTgoICrVYrbtVWpVLt2rWrpqZGrVY7vwo/+Swu5QQAADzIyMiorq4WfaM4orS0NCkpacGCBc5VZ/jJN4GcAABicezYsXnz5kk3D7KiooICKfjJL4CcAABiYbFYKMTp7++XLovIyMiIiAidTuewvh/85GtATgAAEWlsbExOTpaiZc+enTt3UggFP/kykBMAQFwc9ryQCAqhpkyZotfrsX65bwI5AQDEhUqV0dFReVbgTEpK0ul08JMPAjkBAESnp6dn1apV8uSVmpoaGxtbWlpqOwI/+QKQEwBACvr6+hITE+XJi4qv+/fvm0wmW18X/OT1QE4AAIkYGxuTemSEPaGhobdv34affATICQAgHdeuXeNatjzyyCO2xw8ePOB0LvmJ4qfIyEjmKfz00NDr9WazeXBw0HaE2UA9zAqbFCAnAICk3Lx5k1P8RHKyd5LD00kJCQkhP9mewk9y09vb29XV9cEHH8yePTs4OPi5556zvcRsoE4VFjq+Zs2a1NRUNyvYQ04AAKmZMmXK+Pg4+zX3GBvZh1BCgJ/kQ6fTlZWVUQCbmJhYVFTkplZiMBjIYeSnp556qqqqytlAkBMAQAYef/xxCmg47aZhHzNxFZVDdxf8JAfkm4KCAoqKNBqNrWnVDZFWyGGktNjY2FWrVu3bt89WhYGcAADywAxYYL8VIdcGPQdGR0fhJ1np7e2lGKi4uDg6OprruUorZLX4+PiWlhYSEuQEAJCNWbNmjYyM8Ci7+EF+mj59uu0p/CQtdXV13d3dWq1WyHaTKpVqyZIlGRkZO3bs2L9/P+QEAJCHZcuW9fX1paens3w/BU8ObXrsIyq9Xj979mzETzJRU1NDVY9Tp04JTyoyMpIkFxMTc+jQIcgJACAPSqVy+/btFouF6xAJHvT09KxcudL+CPwkFTqd7i9/+UtbW5tYCVK1or+/Py0tbd68eVAUAEAGgoKCFi9eTCWPDPtunzhxor293f4I/CQJBoOhqqqqu7tb3GRJURQ/ZWRkUMri7rIMAAAuYTq8pfYTlZmBgYEOAzHgJ/GhWDglJYVqHFIoJDIykkKokpKSyspK0RMHAAAHlEplWVkZ+YPN2GPe5Obm1tXVORyEn8RH6u28Nm3aRDeKWq2Wc10sAIDfQhXiiooKEXsrHNDpdCEhIc67eMBPIkPBU21traR7IVNY9t57723btq2pqUm6XAAAgIFCqIaGht7eXila+ajMpPistbXV+SX4SWToU161apXUkU1KSsq7775rNBoxUAIAIANarTY+Pp5KNtFb+TIzMyk+czkFGH4SGfoWi4uL2byTmSXAeyzm+vXr29vb1Wo1v9MBAIA9AQEBLS0tGRkZVMSJWP/etWvXc889R/GZy1fhJzExmUxXrlxhOdfaeSIbJ+Li4srLy+EnAIBw6urqOjs73b9nfHw8PDw8ISGB5Tptk5Kfn0+qc1OIwU9iotPp1q5dK09eZEFyof1ekwAAwI9f/vKX7ufDBAYGkp+6uroWLFiQlZW1detWIX1RZrM5zYpKpXLzNvhJTIaGhtgvpCic+fPnDw8Pw08AAIGQbGbOnHnjxo2J3kByioqKYhritFptZmZmQ0ODy90V3GOxWBobG48cOXL48OFJm5rgJzEZGxtbsmQJ17N4d0TJvHQjAMCHeeWVV8gcbt5QUlLCPAgKCjp16pRtdwVmxsuk6VPMRKdUVlbSKT09PWwq1vCTmDhsXsIG2+KJPNald9hrEgAAuMJoo7Oz89y5c27eZguebNh2V1CpVHfv3k1OTk5ISJg+fbp9GxIlbjAYrl69SumfP38+JSWF8mIfcsFPYnLt2jWu0a7NScxwCU6KCggIoKCbU3YATITAnXuAd2GxWBgtnT59mrSRkZHR1tYWERFx/fp1l++3BU8OqKwYjcaurq7y8vLR0VESku3VadOmPfPMM/PmzcvLy+OxUjb8JCahoaEU0Mg2J4nuMCHbdngvLDfotC9tJx0q6WlF86S2gE4AP0hL5JKOjo7Vq1cnJibapvlTefLvf//b5SnOwZMDVOjlWGGekq5aW1uLiooEXir8JCYyN7iNjY3JORzDc3CINe1d5cZbDrriZC+ZYeMergG3w/8It/kbAwMDLS0tpKUVK1aQlg4cOOCwQCg9PXr0aFJSkvO9MVHwNBHt7e0nTpyAnzwLHn4S0v9EkThF5ZxOAaJgX9bbvj4Fr0Lf+UQ3d4LDm7kqik3QCXwMvV5PocwHH3wwf/78zMzMffv2uWl0SUhIOHfu3G9/+9vvvvvOdnDS4MmZU6dOGQwG4eOZ4ScxoS+DvhJOp9hm6fIo2nh0d/kMDh+XrcAVuCoHG1i2LrKE0zRtgXO6HXBOSoZPD8gDFUQajebDDz8MDQ0lLVEow3Lo1qJFi2bOnPmf//zHaDQyR7gGT3RiX1+fwhpFCQyh4CcxodpHbGws+50vmIKAX3FA919gYKDf+skBNjGo87bTYuWrEK9M5xpG8xhWY3+ukKyBB0LFAtO2Ro83b97c29vLqYhgps0eOnSIYiwqyoaHh3kET7Y9BoU38cFPYkK3AjlDnlm6dBOsW7dO6lw8EJtXuBamXtT/BAAnmOFzTU1N4+PjVCxQ4cCjCGLkVF1dzUxmYlYr5xo8KayNe8wD4U188JPIMDeH8I7BSXHeC9lPsO/vYZjoseg4tCI6X4yz8+xb5CZqk+SUtRCgYR/DZDLpdDqtVnvt2rXk5GQhy+I5yElhrW339/dzndBpa9xjEFgYwk8io1KpYmJi3nnnHUn3X6eb8qmnnvLPwXvOuAykpCiLJ2pFdFam4gczOXRWsRxq6IBYPV7OiaBNzxthZtSSlr7++uu1a9cWFxcLXETGWU4MPNZOc6g0C2zig59Ehr5Rqsg0NjbapgJIQVlZGdWVpEvf62AzeFqK/qdJmehKOI0Ll04hQrqvgMwwM2pJS2fPnk1JScnLyxNlt8CJ5MQPh0m4Biu8U4afxIfkQd9HamqqRCu30j0aEREh+i5h3s6kEQb6n4CXQj/5kydPnj59evXq1cxCD2KlLK6cHBr3GCiigp88iICAgJqami1btoh4G9kwmUxVVVUtLS2ip+yN+J5XeMy6FRj9IHjyWHp7e0lLzIxaskh9fb24vQbiyknh1LjHcPz48dLSUn4Jwk+SoFQqh4aGdu3axfuLcQkF+MzoTwwrV/xQNDuPWfB87CXEZuEl9m92jxd9RP6MbUbt4sWL6ffufkYtb0SXk8KpcY9heHiY/qOoqCgeCcJPUqFWq994441jx46lp6eLkiDJKTMzc+vWrWjZY7Cv+MuzVN1Es4BdHmceO6jF9tR+XrbDMArnEGqiN/OYLOVwwcBzMBgMpCUeM2p5IIWcqIBaaYUeX7x48fr162vWrBGYJvwkFXS3Pfroo319fRRICY+imPuJ7lquc+V8FffzcCVqH5vonS6Puxzj5/KIy5ecFeXwgLecnHPEEImHiG1GbWBgINVouc6o5YEUclJY+zVsQ/WoXk5FH9bf80To69+7dy9F5YcOHcrJyampqXn99dcPHDjAuzZE0TGlU1dXxy9G9mFcFqwOhftE73H5Zs+BzfqwIuYl24dAP4dLly4lJiZSTUvSORgeDjOj9siRI4ofJk3KM11EIjlJBPwkMhqNZvfu3Tdu3HjsscdSU1MV1oY+nU4XExOzceNG0gynpmSqWxUXF4+NjdHtiz4nZ9gENHIW9N6LbB/C+Ph4sxXmB+JvomJm1NK/Pzo6mpycLJuWGLxLTgr4SUQoyikoKLANr9ywYYMtYKJfYFxc3P79+ykAopuSXnJ/f9i2Dvvmm28oFEObHvA97t275z+iYmbU0j975cqVtWvXkiHkbwvxOjkp4CdRoDpRSUlJfX29/cFNmzbZP2UaZyl+am1tValUVHui25QEFm6Fec+lS5foHrp69Soz0cF+6zAPgeK527dvP+yrAF6M8/asniAqg8EQFBQkehOFw4xa4Qs9MNsjCF9bT2r++c9//uMf/xCeDvwklJqaGgpx7ty5Y38wyorzm+k3wOwyyYT59JfiLdsvdtGiRfQG+n2KPtFBLPbs2TM2Nvawr4I/3d3d8fHx9g/cvEdgFrzfIGK+EuUlhGvXrk30EiMqqpylp6eXlZVJujc0s4fsN998o9frFdYf7N27d4eHh+kxfWL0SyRTCglxOjo6mK3TBc6oHRgYOHny5MWLF5mGGcYuzAbqy5Yto+tk9kxwn4gMcqJLos/zs88+o1uOnlKdm0owZpgoZfr000/zq3bAT/yhr4R+SMy94sDmzZvdn0uRE0VR0lyXhHhaPOce5z5/OnLmzBn7By7Psr3H+dWJhmjbH58oZfs3uE98otzdX4/LfD1t9AdV5nbs2OF8fNq0aRRhUGkraWu20WikOpZtD9nc3FznIpuUcOnSpYKCgu++++6tt97i1Gdsm1HLtH/wrmhSzZUqvu+///78+fNJLRs2bHCWJZn18uXLBw8eXLduHRUmarXa5QgsSeVEAWJjY2NtbW1wcPCaNWsoQHS+CSnmo0KSbE2lIn0s9O2zj//gJ/6EhYVNnTrV+fhjjz1G95P81wMc4DEszeW28W7St53lkMhEKdjPf5ooX+f0OTHRroNC0pQOebSk+KHE/+STTwoLC93PeI22wjRyaDQaEsObb75JT92YholyRJlRSzqpq6s7ceIEleZfffWVm0G/TCMNmYlOaW1tjYmJWb9+PVnKPmtJ5UQfTmVlZXJysvsx8XOt0LfMtHZSYLp06VKyFJvWVPiJP3QfUDCbnZ3d3Nxsf5wqZZ7ZOufPOC8zwWljdfa5uJkDO1H6LPN1v+87myGLnjMtVzYtMVCoQeU4lfj0gP1vk9zA9BmT2Kj0dx5Da5tRGxERQRoQPqOWQg2q2lIg0t/fz95wTK/Bpk2bSGx0nceOHWNsJJ2cKGWKDhctWsRpAw765FOs0BXS985m5Bf8JAj6xJuami5evEiBtu0ggifPwSEYcrPyAu9FGRxSsP/LJn0RncGk7Oa/8ITgadmyZV1dXXIOSaXSkGqQnEp8e+is0tLS9PR0qvgzcxCZGbVHjx4NDg4WcUYtpVNeXs57JgmVRRQ80XWSk7Zu3UqikkhOjESFTMdkPszMzExKiq7ZzTvhJ6Hs2rWL7lGqRDBaio+P96Lhm8AGj7LbZRfURI2K7iMn52CO62W4b9ZzfxlyInAAG1eokj4yMtLZ2SmwSWPu3Lk9PT2k1Zs3b/785z9ft26duAs9kES1Wi1dp8BRIVQQdXd3kwAomLMFUiIyMDCwY8cO4dMx6etoa2ujwpOCWmaSskvgJ0FoNJq7d+8yyxfRnUF3bXZ29sO+KMC/x4XNSqz2HUgTxUlsmvKc+7r4hW7O5zqHaA9dSw8F+nmaTCY3xR8nyBw6nY4UVVNTI+7sJVIdycnl4qo8oKKf/JGUlERiFtdPRqORwh3ytFhDK6nkpA/TzTra8BN/6K6iqoqt8yk2NvbcuXPY09YTcOgEspeNc0eUyx4jfuW7w/Kvzuqyf8Bm2T33eypOpECXl+RvUE2fwhEq90VMk1FUXFyciOu5DA0NlZeX06WKkpoN+scTExOp0iyWSs1mc2pqKv3j4o77Z9bR7ujoSElJcX4VfuKJwWCoqqqim8C+3QAte56Jc2DhJu7hnYubRccd0ncjDDeryrIZH+FyzxE34wl9FQqb3n777f7+ftFHKlHp3NraSiW1KIlbLBZKipwn+mQvujaqOickJHR1dYmyDnpaWhrFOlKsslZfXx8fH081e+fyE37iA939ubm5LS0tkk4hBLLBI8hw7jpy1pubNWonEiHvbjA3MZn7HH2SkpKSwsJCiX6eVJIuX768sbExJydHYFL79+9ft26dREtrkpYoNCGpVFZWCkyKDBocHCxR3yGptLi4eOfOnc4tnPATZ7BJoJfiRkJCAouJIh73fWDul1d3j8tAzX9io0kxGAzffPONWN1OLlGr1TExMZs2bRISQlE19+jRoy4n+IsFXSEFJRNN3WVPWVmZRqMR66qciY2NbWhoYLr37I/DT5whOZHt0ZQHHhbOQnIjJ78KmxgqKioofpI0Cyruk5OTBYZQFNnk5+dLOleSEqcsBIZQpI2IiAipSzyKn1QqFfwkiMLCwvj4+EkXvAKehs9HGGjfYzCbzZ9//rnDlHkpIDNROSDET++///5XX30l4iW5hEKoJ554ggIg3iI8ePAg1cjFvSpnyH/j4+NDQ0P2Q8zgJw7U1dUprPflw74QwAr7od5uxh0Iz0XcBBUsbOo8xs+37csequy/+uqr/MpiTp9kWFhYcHCwwWDgF1gMDAzMnz9fuh3cbdBHsWLFCmbyFo/TyfcXLlxg2fMk8FZk9mm033UXfmIL3fd9fX281yEGMuMw1NvNO903jrkZw+3yVTZhCstR42ym3Dqrl8f1+BJarTYvL4/fuVwHcK5Zs6arq4ufn06ePJmWlsbjRB4kJibyXrODyj2XI79dInAEbKoV+IkzzGhyZul44BWw7J6ZNBGuCwWxaU+b1Cj2U4AF4m/te8xcV3nyWrZsWXl5uX15yp5z587J1hITExMz0QTYSaFKOf2b4l7PRMydO/f77783mUy2sBJ+mhyj0Zibm+sw1Qn4JALXrJtUimxSE64lh2UpxErW8zGbzVOmTJHtdxoWFuZmOyv33Lp1S4bGPQa6TmZrKx5cv349IyND3OtxQ2ho6O3bt+EnttAdT19PQ0ODbDcTAIAfVPV+/PHHeZzIL7ikMuHmzZs8TrRYLPfv3+cxPYv3VOuZM2faxyXsGR0dnT59OtezeHdEkZ/oOm1Npr7vJ71eT3cD/c8jIyNLliyhI3PmzGH5PdGJmZmZe/bswapFAHg+VPWmAo7rWe53RXEDBWoUrlEVlqtpqDh64oknOJ2icLvE4qQ4xCXs4RHnCdkKICQkhD4c21Pf9BOze7pWq+3u7l62bFlgYCD927NmzSovL6dXr1y5Qn/Xrl0bFxfnvs9wy5YtaWlpMq+4DACQDYETD8hP4+PjMqwjw37Gm0uY6+SRL8V5VH5yOsW+eVngx+trfhoaGiouLv78889JPy43G2ZgBNbS0vLWW29t377d5TzwvXv3hoeHp6enS3/VAAARmD59+ujoqJw53rhxg0dQwrthkDf0sfDroaA4j0pL2dbKGRsbs79O3/ETfYglJSVffPEFeWXSUeD0EaisMLs+R0ZGvvfee/bDKDs6Oq5evdrU1CTxVQMARIN+17du3ZItO6PROGfOHB4n8m4Y5M3w8DA/x0RERNC/KZufHDzqI34yGAy5ubnZ2dlcF92iz6KyslKtVm/btq27u/vAgQN06wwMDDQ3N8s2ShUAIApU3N+/f99isbAfwmffBsV1lATVbnl0dzE8/vjjdDp7Pzm0lXFqN6OMZs6cyecqnTqE2CCk/8lhOIYv+Emn01VVVbW0tPCWPFmKQqVjx46lpaXt2rVrx44dwjfcBADIT2xsbH9/P6cVyOz3PXnECstSlTJ66aWX+F3n8uXL6XROA6/sZ79yKvepwv3yyy9zu74fWLZsWV9fH/spugqnnWXYMzQ0NHXqVJ+Kn0gq5BIKfYTrJD09PTw8fPXq1b29vdg4AwBvhKqYJ0+e5LpCpssZY5Ny6tSp6upqThnZeO2118rLy1UqFaez+I01oBIyMTGRx4mEUqncvXt3bW0ty/cLmVre3t6+bt06+yPe7SeqF2itiBXrREdH081dVFSE2bgAeCNkpu3bt8uQkdFoHB0d5b07LZ145coVGbqgLBbL6dOn6+vr+Z1O0cz8+fOppJVhGPOZM2ccfO/FfqL7Q61W9/T0iCsS+hpMJlN2djYGRwDgdVB5+sILLzjvJCQ6VNlfv34979Op1Pr1r3/d2toq9SpH9FGsXr1aSCHJhKRS+8lgMNy/f9/B917sp9TUVI1GI0XtIyUlpa+vjxLnGn0DAB46LncSEhdma8H+/n4hiYiyyaF7KHgqLS0lRQlJZMOGDXSdDjtfiI7LXbu81U8kj6VLl0q3ZVZRURF9JfTFoJUPAO+CioWIiAhJQ6iamprNmzcLrByLssmheyjxVatWCRwdTmUgmaO4uFi63RsoeLp27Zrz9+WVfqJKQWVlpcDKi3tkuHUAABJRXl6elZVFVUwp2leMRuMnn3yi1+uFJ0UhVFpaWkJCghQTjMxm85EjR3p6eoQnReaoqqqif5l3f5sbqDynkJeU7/ySV/qptbWVKgVSL9gqQ/QNAJCCuXPnUn0/MzPz1KlT4qbMLBjd3t4uSrFAhdihQ4coQVFGINvDrB16+PBhscpJrVZLKhUyjWcitm3blpiY6LJ/yyv9RJ+UDPsN0/e6dOlSTttzAQA8hNjY2KtXrxYWFlZWVoqYLBX6VPiI2BMTGRm5detWSlbc1jM3hT4/JFJpXV1dYGDgRD393ucnk8l05coVedZsjY+Ppy8DfgLAG8nJySm0IoqiKHIii1AMwXVy1aQolcqRkZE33nijvr5eeNFPkdOWLVvCw8NFH95FKiU3U6lIEYIoYRnJ6fLly24W/fE+P1FAs3btWnnyovtm+/btnJZLAQB4DmQmKgSTkpKam5uF9EUZjcasrCwKdESXEwOpNCQkRHjRb5OoRAtb079Pl0fpUywlZHgaI9Hg4GD3K9J5n58GBwdl22+YbuipU6dS1Qb7PwHgpVDR/8tf/jIuLi4/P59HqU0l6f79+z/66CONRiPdgGGFdVoLlTMJCQkUSPHr9iYTU3F/+PBhSZuX6ENoaWnJyMh46aWX1Go1D+szK9JlZ2dP+nV4n58cFmBnCe99J5l9veAnALwXqvXTT3jPnj0UTu3atYtliz3FIq2trbW1tRs3buzp6ZFhzTMq+ru6upgdFeg6U1NT2ViKDNre3l5aWpqcnEzXKcNO32FhYd3d3aTDqKgo+nBUKhXLTHt7e8vLyylSZBl+eZ+feGxkImTfyVmzZlH8hC0KAfBqqEil2GJoaIgstXnz5tWrVycmJiqVSmcBmEwmKkY7OzvPnj1LJW9/f78MJb4N244KJSUlFPCtWLGCuU5nO5I+mes8ffo0GZcey7YLhsI6KYoukj4fstSzzz47f/78tLQ0uk6XnxUFTOTdjz/+ePHixdXV1ewHqXufn+7evcupIiNw30key8sDADwTiqKamppsJXtmZua9e/dmzpxJxavCup4n8/TVV1/NyMiQbjrqpFApTzY9cOAAxUNUspOo7ty5M23atGeeeYZevXDhAvOUsawooyr4QUVxkRX66E6ePLl79+4bN2489thjTIX+2rVrw8PDCusKSXSdZWVlXE3vfX6SmfHxcfv9SAAA3g6VqilWmDU2qQLKFKNUr/eokVB0MUorzCAC0qrBYFBYmwE9bYOFaCvMMucWi4WZvBxmRUiy3ucnmfdzHBsbW7JkiTx5AQDkZ4aVh30Vk0NO8oqOBtKqWNfpfX7i2uAmZN9JBd/hGAAAAATilX4iZ3A6hfe+k8SVK1fmzJnD6RQAAADC8T4/JSQklJeXc122ld9+js77DQMAAJAH7/NTdHT0hQsXZNh3UuFqv2EAAADy4H1+UlgnWut0OokW8LDnxIkTpCipcwEAAOCMV/opNzdXpVJJ7SeDwRAYGIiVIwAA4KHglX6SYX9MghSo0WikSx8AAIAbvNJPxM6dO8kf0vmJ5EcKlHQ5SAAAAG7wVj+ROVatWlVTU6NWq0VP3Gw2V1VVNTQ0iJ4yAAAAlnirn4jS0tLXX39dilY+0bfIBAAAwBUv9hPR3NwcHx8fHh4uYkNcfn4+pSnRLmQAAABY4t1+0uv18+fPLygoyMvLEx5FWSyW7OzshQsXcp38CwAAQHS81U8DAwPl5eXd3d1dXV0xMTHklZGRESFeMZlMmZmZlA7LvcsAAABIivf5yWYmhXU9fCZsamtrKywsXLJkSUlJCddAymw219TUHD9+/NixY+w3zgIAACAp3uQnezMxkI1sjysrKw0GQ0VFxcGDBykMcrkzpgNDQ0PkJDLTm2++Sed61NYvAADg53iHn5zNpLALnmxERkZSIEVvbmhoyMzMpFcTExPDw8MV1lX76K/RCj3o6en58MMP6cHGjRv1er2nbfYFAADA0/3k0kwM9sGTPcxOjk1NTcym99evX6eDTApz5syJiIigBytXrmxvb8cIcgAA8Fg82k9ms1mtVjNbBTvgHDw5w2yNLM2lAQAAkBaP9lNQUFBPT09cXJyzoiYKngAAAPgGHu0nxQ+KevHFFy9dumQ7yCZ4AgAA4NV4up8U1la+adOmLVy40KYoBE8AAODzeLqfjEZjVlbWH//4RwqkmIY+BE8AAOAPeLSfGDk1NDSEhYUprIPCSVEIngAAwB/wXD85yEnxQ18U5ioBAIA/4KF+cpYTA+QEAAB+gif6aSI5AQAA8B88zk+QEwAAAIWn+QlyAgAAwOBBfoKcAAAA2PAUP0FOAAAA7PEIP0FOAAAAHHj4foKcAAAAOPOQ/QQ5AQAAcMnD9BPkBAAAYCIE+clgMJjNZuYxs4E6eyAnAAAAbuDmJ7KRTqfr7u5ub2+/d+9eVFTU1KlTmZeYDdTj4+PT0tKUSuWMGTPcpAM5AQAAcA9bP5FR9uzZ09HRkZKSkpiYWF9fHxAQ4Py2gYGBkydP7t69e/HixTt37iSBuUwKcgIAAOCeyf1kMplqamo+/PDDXbt2HTlyxP2bo63U1tb29vYWFBSEhISUl5fPnTvX9gbICQAAABsm8ZNer8/JyXnjjTeGhoY4pRtrRafTbdiwobCwkKIuBeQEAACANe781NHRUV9f39XV5b4zyQ1KpTIuLi47O/vq1askKsgJAAAASyb0U11d3eDgYGdnp8t+JvbQ6U1NTWVlZb/61a/Onz8POQEAAGCDaz/pdLq+vr62tjaxsikpKbFYLO3t7Wq1Wqw0AQAA+DAu/DQ0NFRVVUWRk7g57dmz5/XXXyfzKZVKcVMGAADgezj6iaKc1NRUsogUO6k3NzfHxMTMtSJ64gAAAHwJRz81NjauWrVKol6igICAkpKS4uJiEVsOAQAA+CQ/8ZPJZGpqaurq6pIuP6VSWVZWZjAYIiMjpcsFAACAt/MTPx0+fHjdunW8R5OzhEKoiooKhFAAAADc8BM/HT9+vLe3V+osKYR66623KFaTWoQAAAC8lx/9pNfrQ0ND+fU8PfLII/T3wYMHLN//6quvkgjT09N55AUAAMAf+NFPOp0uKSmJXypkJkZRLHnttdcOHjwIPwEAAJiIH/305z//ubq6Wp5cY2JieLsQAACAP/Cjn0ZHR2XrEAoICJgyZYrZbJZilhUAAAAf4Ec/DQ8P8+h84tSsZ8/jjz9uMpngJwAAAC75n59IFTNnzuR6MsnJNiaCq6hCQ0Nv376NhSQAAAC45H9+CgwMvH//Pqcz7eUEAAAAiMv//BQUFER+slgsAnfTYM/o6Oj06dPlyQsAAIDX8WP/0xNPPGEymWTbn+nWrVuYnwsAAGAifvRTRESE0Whk7ydmzhPTxMe184kCNQrXMDgCAADARPzopxdffLGvry86Opr9ybZpucwD9j1SOp0uNTWV67UCAADwH370U6qVoqIiTufbhMRprER3d3d8fDynjAAAAPgVP/qJGeo9NDQk9Zhvi8Xy8ccf79u3T9JcAAAAeDU/Wb988+bNGo2msrJS0ix7enpeeOEFdD4BAABww0/8tGnTpsjISLVaLd3IOgqeioqKdDqdROkDAADwDX7ip4CAgPz8/JqaGulCKEn3jwcAAOAz/MzhOYVQ8fHxEu2/LsP+8QAAAHwDRz9RCNXS0pKRkaHVasVt5bNYLJmZmXV1dZiWCwAAYFIc/USEhYVVV1eTSzo7O0Vc7mjLli2UZlRUlFgJAgAA8GFc+Ikgi2RnZycmJlIUJXygHUVOJKfw8HBsmAsAAIAlrv1EpKSkUCAVFxfX2toqZEaU2WxOS0ujyAlyAgAAwJ4J/aSwRlHt7e2pqamrVq1Sq9VcAykKmxobG48cOaLRaNCsBwAAgBPu/KSw9kX19/fX1dWRYDZu3KhSqdiMbqCYSafTlZaWJicn9/T0YEAEAAAArkziJ4V1RB8FT2QmstSzzz47e/bstLS0hQsXOq8kazAYLl++3NnZefbs2ZSUFBIbzAQAAIAfk/uJISgoqMiKXq9vb28nCXV3d9PxOXPmBAcH00GFtT3w6aefzsjIaGtrk/CSAQAA+AFs/WQjyortqdFoNJvNUkzmBQAA4M/8H+mjEWpIYYXwAAAAAElFTkSuQmCC" alt="" name="图像3" width="565" height="237" align="bottom" border="0" />

  最后是合并操作Union,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,如图所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAhIAAADtCAIAAABlBAsNAAA7/ElEQVR4nO2de1BUV57HO1vZCUltFbpTJZhxQTIrRrd85KEpR9GYIJYOoGgHMQKyBYKlIikETfCBgDKLEqrQkBqRnhpeq2CjI/RkSrqzDo8kEzpmRtjRiDsRu3QUt1zp2lqlZ7cq+7VP5qbTNG3f2/ce+vb9ff6wmrb7ntvn/r7n+/ud+zhPf/PNN7ogxeFwWK3W0dHRvr4+/BkWFjZz5sw5c+aEhoZO9K6pFbvdPjAwMDIy0t/fjz8jnVCXEkpAwRawPD3ROyA/g4ODzc3Np06dun379pIlS0JCQl577TW8j+BrbW29dOnS888/n5KSsn37doo/H0GXGgyGf/3Xf3306NErr7wyadKkefPm4f3u7u6hoSF06QsvvLB27VrqUsJ/KNgCn6CyDYvFUlRUhPIiIyMDryMiIjx+DHFpNBoXLFiwcePGbdu2oQrhvJ8qoq2traSkBC9ycnK++OKL8foKWWFHRwe6FD1PeiakQcGmFoLENoaHh7Ozs/ECeQrKWO8fjo6Ohrsg4PDhmJiYpKQk/EnB54bNZsvNzUWuB4tFj3n/8Bwn6NKamhqm5127dj3zzDN8dpVQO0y/FGxqIRhso7m5uaKioqqqKjY21vdvwSfy8/MRfHV1dYmJiY2NjeNVJxoEnfnLX/5SQpcyP4ae4+LiWltbqZIjnohk/VKwTRSqt43i4uK7d+/29PRIKxeQpCDyVqxYodfrWfIi+x6qjpycnPDwcKvVKi2DY3pOcOJL8UdoGT/1S8E2IajbNjDAzZw5k82H+gPqYrPZnJycnJ6evmnTJln2TY04HI6dO3cuXbrU/06AgDs6OtCl2OD69etl2T0iyJBLvxRsnFGrbcg4wDGQtrS3t2ObN2/eRP4iyzbVBboUrpmYmChXl4aFhXV2dmZnZ4+OjmrZjImxyK5fCjaeqNU2du/ePXfuXHnj45lnnjlx4sSaNWssFouoadbgAJJDviZvsoYura+vX7ZsGeo5mgAkBBTSLwUbH1RpGxjWh4aGqqurldh4bW1tQkICyl5NnWFrbm4OCQlRqMBvbGzU6/Vms5kuVyN0CuuXgo0D6rON4eHhoqKijo4OhbYPtzhw4AAq6JaWFoWaCDRsNhs0DKUptP2IiIi8vDwkmCjmFGqCUAtK65eCjQPqsw0ExJ49exQtBeLj4zGGGgyGzMxM5VoJHLZs2VJVVaVodrZp06bOzs62tjY6Y6lxOOiXgk1pVGYbAwMDV69era+vV7qhI0eOzJkzB/4R9FNVFoslJCRkyZIlSjeELo2JiUGX0p1ZmoWnfinYlENltvHBBx+gAuXQEKJt48aNzc3N+fn5HJqbQE6ePIlqg0NDMOCkpKS6urrt27dzaI4IQLjpl4JNUdRkG8PDwxcvXjx27Bif5rZt24aEBWEXxAmLzWb7/e9/z+0sTmZmpl6vJyVrE876pWBTDjXZBnJ/VADcBnEkLFFRUVarlcMEzkRhMBi2bt3Krbno6OiQkJCBgQG6m1eDcNYvBZtyqMk2Pv/887S0NJ4tLlu2rLu7O4ht47e//W1lZSXPFpcvX44uJSVrEP76pWBTCDXZxqeffsqtwmUsXLjw+PHjPFvkzB//+McnPnBUXmJiYhobG2nqQIPw1y8Fm0KoxjbsdvujR484X9eEIfXq1as8W+SJzWb7+7//e853ReEI3r17l2eLRCAwIfqlYFMI1djG4ODgP/3TP3FuFGF3+/Ztzo1yo7+//6WXXuLcaERExNdff825UWLCmRD9UrAphGpsw+FwhISEcG70mWeeefjwIedGuTEhXQonvnXrFudGiQmHgi2YUI1thIaGPnjwQOeMv6amJo3cv60oQglvt9uNRiOfLh0eHp42bRqHhoiAQtAvBVsQoCbbGBkZaWtre+edd5BB6PV6DpPywR12U6ZMuXPnjsFgOHjw4H/913+lpqZyuDgSrv/ss88q3QoRaDD9Njc3v/vuuxRsakc1toEk5fr163AL9ufAwACH62Lv3bs3depUpVuZKG7cuHHt2rWsrCz25+DgIIdLFW02W1RUlNKtEIEGMjDoF27B/qRgUzUqsA0YxoEDB9wu3evr6+NgG93d3cuXL1e6Ff5Aw7t3725oaHB9E13KQcno0mXLlindChE4INig39raWtc3+dxOQcGmEIFuGyaTKSMj4/79+27vf/755xxaR9hxvkGJAwaDYefOnWNP9ff393Novaura//+/RwaIgKBtra2nJycsfqlYFM1gW4bMTExixcvbm9vd3v/97//vdJNOxyOjz/+2C0lDwLi4+NPnDhhtVrd3v/ss8+UbhqJ540bN2jlNe0QGxv7yiuvdHZ2ur3PQb8UbMoR6LYRGhp6/vx5JCxuRe7169ftdruiZ8Wbmpo2bdoUfM8xDAsL6+npSU5OdjNjGAmcUtHfazQak5KSgq9LifGAQhFm2dnZbukXgk1p/VKwKUeg2wYD2XFkZOTevXtd30Tk+bLiNzsXhxfIO0TFEBo1GAxid1UVoB9gxnl5eW5njPr7+33JzmxOdJK6FGIWu7eEqmFLfIeHhx85csT1fR+vaqFgC0DUYRugqKgIziFciaFznsL1aBvIYkwmE3Kc1tZW/Dlt2rTZs2fjRW9v78OHD/Hn6tWrExIS4uPjvTSHLURFRQX3Q9Cqq6vRpbt27RLeQZd6tA1Yr8ViEbp0xowZ7AIVoUvXrVuHLvXu4s3NzYsWLeL8CCwiQKioqMChFy7bA5cvX/ZoG74E24oVK7zrl4JNUVRjGzrnWo9hYWFr1qxhp3MRdm4fQP5SWVn561//ev369WlpaR6XkWBB2djYmJGRkZmZmZ+fP/Y5OTAeuJRya2sHDuznZ2dnsy4de6ISJd2hQ4e+/PJLeK2XLoXLHj9+PCUlBV2Krhs7+YDPYODo6elR6IcQgQ9iA8G2YcMGFmzd3d1uDxn0Pdi865eCTWnUZBs65xm23/3ud8uXL79///6nn34qvI8ytrCw8MaNG3v27PG+5CSCbJMTeENTU1NMTAziD+HrOtIdOHAgLy8v6JeDZaArUHOsXbsWXep6ohIeDA3fvXt3//793ssIdFSmE9alqFfGdunu3buLi4s5PzaRCDRQIvz2t79dtWqVXMHmUb8UbEqjMtsAc+bMQT6C+EOoIa1AGLW1tZWUlJSXl3uvW91AVCHaUDW///77qHkNBgObkkJ5Ozo6qqmHlyxZsuTixYso0YQTleiNhoYGOLGELk1NTa2pqUlMTDx58iSbJcCf4eHh2L5iv4BQDcgqoF94w/Xr15l+/Qm2sfqlYOOA+mxD53ywJSpQDExWJ0NDQ/hX2iUT+FZRURFGOhTFCNxJkya1OpF9nwMcSM5isej1ephxR0cHjLOzs1Nal0LP6FJsasuWLYcPH2abOn/+vOz7TKgU6BeCZfqFkP0JNjf9hoSEULBxQJW2oXOOTYgPpCcoeL3PSvkC4hhbw0h38+ZNxLE2L9pDJ5hMpg0bNsiyAjPqjPb2dgwN9+7d+8Mf/iDHDhLBA7swF+GRnJzsf7AJ+v2P//gPCjYOqNU2dM4zEGvXrpVr6S5YBbLsdevWwTZEFcvBBIoDJG5yTdAxa09KSgru9dgJaUC/6enpcgUb0+/q1auhX1+uyyf8Qa220dzcPDIyUlFRIe9mT506FRMTE+1E3i0HPjU1Najx5T2pAzGjS1esWGE0GpESyrhlQtUoEWw6p34RbBAvBZuiqNI2BgYGamtrxz6xwH8wzGGAQ7Uh+WSJSunt7W1vb79w4YLsW0bN0dTUpNfrNTv7R7hBwaZ2VGkbBQUFhw8fVigskKckJSUhG8rPz1di+4EJfqxyt8Qj+1u+fHldXZ1cM4qEqqFgUzvqsw2TyTRp0iRF58qLiormzJnD7i5UrpXAgcMt8RgpYmJisrKyKAfUOHyCLSEhATWHRvTLH/XZRmlpqdKPisLQlpeXV1VVJfu5k8CEQ5dCwKjhKAck+ATb5s2btaNf/qjMNgYHB0dHRzk8KgqpyquvvqqFsOvt7Z08eTKHLoVhxMbGkm1oGW7Bph39Tggqsw2j0ZiSksKhISQss2fPRpQH/ZWjHR0diYmJHBqKiIiYNGnSwMBAcD8gkvACt2DTjn4nBJXZxunTp7k9DDk5OfnMmTNBH3bnzp2zWCx82lq7di0GDrINzcIz2DSi3wlBTbYxPDz84MEDbndUxMTEVFdX82lromArGXC7yH3p0qVlZWVFRUV8miMCCs7BpgX9ThRqso179+5NnTqVW3Ooc//85z9za25CgJLZYgZ8wJBx48YNbs0RAQXnYNOCficKNdkGqg0JtvHUU08Jr7/55hvfvxgaGvro0SOl10mdWNCl4eHhYr8luUuh5Nu3b4ttjggOOAebFvQ7UajMNsSGHWLONdTc/nwiP/rRj9BoED+o4O7duzy7FAJ+9tlnlV5EmghMOAebTgP6nSjUZBsSYEHmmrAQriAXCwkJEfstf/oTtjE6Okq2oUEkBBvpNzBRk22EhYUhYRH7LdcMRWz83b59O7hvNMWvu3btmthvicr43Lh161ZwdykxHtKCjfQbgKjMNu7cuSPqK2KrWlfsdjtS4+CeGI2MjBwaGuLWnM1mmzFjBrfmiIBCQrCRfgMTNdlGaGjoyMgIt+aGh4eff/55bs1NCFOmTBHrxG6IEra0ixqI4MD/YBOFFvQ7UajJNtipLWSsvp/jwojmVtj6PsxZrdZFixaJ3Ul1ER0d/eDBA7aks49fcetSUclgT0/P66+/LmoPiaDB/2DTkX4DAzXZBti4caPRaBT1SHPJRW5ra2tubq6076qI1atXWyyWTZs2+f4VyV16/vz5yspKad8lggCewaYR/U4IKrON+Pj4goICDith2O32L7/8MiYmRumGJpy33nrr+PHjopQsDaSZX3/99YIFC5RuiAhYuAWbdvQ7IajMNjDooM4dHBxU+hEjTU1Nb7/9thbOp0Fa27ZtEzV1IA2UiehSRZsgAhxuwaYd/U4IKrMNUF5evn///paWFuWacDgc1dXVPT09yjUROPBZXERTXUqMBwVbcKA+24iPjy8tLVX0+dt1dXVJSUnaueI7KysLaaCiNdz777+fkZGhnS4lxoNDsGlNv/xRn23onAXHvn37zp8/r8TG7Xb7iRMnzGazEhsPTJADoksLCwsV6lKbzXb69Gmr1arExgl1wSHYoF8KNkVRpW3Exsb29/cXFxeXlJTIu2WUt+np6R9++KHWUhV0KZyypqZG9tX30KVbtmwxGAw00UwwKNjUjiptQ+dcZX7z5s1tbW3r16+XcbO7d+9OTEzU5tIuFRUVa9asmTlzJlQt42azndAFVIQrCgXbzp07kfZRsCmNWm0D7Nu3b8OGDXghl3Ps2bPnv//7v/V6vSxbUyMNDQ3Jycmjo6Px8fH+bw2pH2wYQ4O81k4EB+Xl5Vu3bpUr2HRO/d6/f/9Pf/oTtuz9k2FhYZmZmbI0qk1UaRs2m+3w4cNNTU1fffUVzKOvr8/PCzPsdjuGS9QZMTExP/7xj1HKoHzW4FNa8ZNbW1tRHAwODvp5cwzrUkD6JNxg+v3oo48uXbqUm5srV7Ax/aalpf3P//zP//7v/3r5/IEDB/xpjlCZbbCAq62t1TknlP7hH/6hvr6+pqZm5cqVhw4dklactrW1wXWqqqrY3NQLL7ywd+9e/KlN88DvbWlpKS4uXrNmDbpU2uVqzc3N6FKDwUDTBYQrrvr94IMPpkyZ4n+wuel3xowZVqv16aef/r//+7/xviJXfaNZVGMbrgEHnnvuOSFDweA+b968goKC8PDwsrIy3y/sM5lMpaWls2bNMhqNwnOukIkkJCSg2tWyeZSUlFgsFhQK6Bx0qe8PAUOXFhUVLVq0yGw2a+2yAsILbvqdNm1aVlYWe+1PsI2nXy+eAV+hbMZPVGAbbgHH2LFjh+uohESjq6sLYcTOTKSkpODFeP7R29t75syZs2fP/uQnP0FG7JbjIBNBVLEL+LRsHrFOkMrh30mTJqFL0TPjdSl6Hj7BuhQaVvoefkJFeNTvu+++63qxk+Rg865fj9jtdiga4wOt+ieZgLYNjwGn+36p4Uq8k8HBQYxcCAt2S6Drk7qvXLly69atuLi45ORkJMXjpcMsYRH+1LJ5rHeCnhS6FJqcPHmy8AHWpehP9KqXLiU0yHj6dS01XJEr2Nz060ZjY+Mnn3zC/CknJwcjBgWtWALXNpqbm1NTUz3+l1up4QaSlCIneA0LuXfvnvBfqE99CRGPCYtgHhcvXlTuBvXAZI4TdpcMxIx8rbOz8/XXX//BD37gY5eqFF8e0z3eZ/xZYigI8KJft1LDjbHBJvyXP/pl/O3f/u306dPhOtg+Nl5XV3fw4MHZs2fDimBUmsoI/SFwbQNHsbW1tb293e398UoNj0Q7kdD6eAkLmtaaZ7jBfn5ZWdm8efPoylrdX9eE0LJDeGQ8/Y5XanhEstbG0y9yHWFAwMarnbBZ6z179rz55puJiYnYc7pb0DuBaxs4cgg7ZAFukee91JALjwkLKm5WxGic4eFhVBvh4eHBbRvMDKRZAhnJePr1XmrIhUf9pqWl7du3b+yHlziBf5hMpo6Ojry8vJ/+9KfwD2yE/MMjgWsbOmfkVVZWfvbZZ//5n//J3hFVaviJW8KC3GTXrl18mg5woC6d80HotbW1waorYdz3xTnG/q/GPYOB2ICIXPUrqtTwk7H6PXnypPdwZSdHjx07hgiH273zzjurV6/GRuiCXTcC2jZsNhtqi08++aSgoIDlLHxKDYZrwoI6Y+HChenp6Q0NDcE6UPoOskj8+/DhQ6grKAsON58Yzznc1isdD81ayMDAAKrzf//3f9+yZQvTL59SgyFZv/gAOzlvt9sR4Y2NjRkZGZs2bXrrrbe0+dihsQSubcAzEG1IECIiIli1a7FYuJUaDJawuM5NkXOwGSr2GmNBkNkGcwKP1cPY/xJejzUVmqSCZyDbg3LZoweg3y+//JJbqcHwU7/Y801O4B+orcvKyq5cufL222+npqZq/ARngNqGq2fo/jpPCufnfNEOEpampiZhDUv22DWNOweboWIE0zyVqyt4LCNc/0vjlvBEXD1D91f9IvHnHCpy6Re/ItMJcibEPF6MjIxs3LgRW9bmLUqBaBtunsFglSP/nXFb95icg81QMYJpnspjGeH9Y4RH3DyDAbFMyAyPvPpF2rrdCcYodnMJ3szIyNDazYMBZxsePSOg0LJzuM5QMYJvnorwB4+eEVDIol+MTvlOBgcHm5ub2c2Dmzdvhn8E8W1MAoFlG4HvGQzNOofrDBUjmOapGF5OdLuWGm4fG/st13c0UqMEvmcwZNRvdHR0iRP89qampldffZXdPBjcN58HkG2oxTMY2nQO1xkqRjDNUwmMd9f3eJ+hU+I69XgGQ3b9zpkzp8IJu3nw4MGDP/nJT9jNH6roEFEEim2oyzMYWnOOsTNUDJqnItTlGQyF9Ot28+C77777xhtvBNnNgwFhG2r0DIamnGPsDBUj+OapRKHBwsINNXoGQ1H9spsHHQ4Hu3kwJycH2VVw3Dw48bahXs9gaMc52DWI7PXKlSv3799Pdz8R6vUMhtL6FW4ehH8gwQqOmwcn2DbU7hkM7TiHRvDx9m+db6UGBtb+/v6gnONWu2cw+OgXWx578+C6deuysrJUd/PgRNpGcHgGg5wjmPDllLjO5+kpeAZ7hDhb7zpo/CM4PIPBU7+uNw+aTCZ282BSUhJeqOXmwQmzjWDyDAY5R3AwnhOIel6hx/9qdaILCv8IJs9g8NdvWFgY8w8Mhh0dHcLKpEgyAnxUnBjbCD7PYJBzEL6gdv8IPs9gTJR+MQyym8/ZyqTCzYMJCQmBOUKKsw1WVeHfmzdvDg0NsTdffPFF2GZkZKSP0R+snsEQG3ks0bDb7deuXbt79y57c/78+ejJmTNnBtRFezj0/f39Dofjd7/7HV5g4MBBnzdvXkhIiJeVn+UCKhL6R13cuXNnvP9y9Y99+/YpPcftUb9igy1YPYMxsfoVViZlNw9iZ6KiouS6edBVv+yd8PBw7CR2Vaw/+WQb6BT8BgTK119/vW7dOvyApUuXpqWlsf9FfyEQu7u78/Lynrg8VnB7BsOXyGPPRKuvr2fTmjhy6DchMi5fvow+ZxftsS51e7QOTywWy5kzZ9ra2rAnMAns6v79+//yl7/84Ac/wM4jELGrHOrrvXv3uq7vqyI6OzsxCoz3vwsWLFA6r2T6RbDBwMbqV1SwBbdnMOTVL1vxSeyNTWNvHnz55ZeZf4jtebgFtoC9xXcF/Qq/AqM3xmT8ZCR/vuv3CbYBa6qpqfn5z3+OrqmsrESIj/2McBnZiRMn2B0u+LXFxcVje0oLnsHwEnno0vfff//06dOrVq0yGAweE0yhS/Fhs9mMLi0pKamqquJ8xbfVakUKjHhCvB45csRjvLJdwu6x+hp/4nchXZJ9WJG8vu+Eg9R+7Jsc3EL3ff36H2xa8AyGjPplN21gSCwvL2ebFYVw8yDL3kStPAjLyc/PZ/WK9zursHui9OvNNtDqtm3bEHAYPnwMFHaHC+wBhoZdQY4jSF07nsHwGHmIIRzIjIyMnp4eX7oUXxS6tLCw8Pjx43w6ELnSzp07h4aGDh8+7OPV5ay+3rVrV11dHcbEPXv2CDd5EAJ83IIhVr/eg007nsGQS7/spg30HjKwo0ePYmvSpptinSA1R90v1DFvvfWWx1QS+s3OzkYlNJ6xjUWUfse1DSQp2Dl0k4T4xldQvqGn4BOIPxaImvIMhlvkId1A9YqAkxA36LeWlhYMBHq9HpmgojcKIe/AwYJtSHhkCH7m9u3bUeoeOHAAmRFqlMA5NzOB8HQLhp/6dQs2rXkGQ0b9Yuw+f/48uhQxgEPjcdrGR4SbB4WVB/FnWlqaMCbgYGHEhwAlTE74qF8PtoEdglOFh4dfuHBBbKuuoKcQuNjU559/3tfXpzXPYLDI27hx49/8zd+8/PLLUKM/W0NkmM1mdvkNjq5M+/g9EIvIiXCw/JkRwuCCshqZDvZTa2PNWNhNXtyak0u/QrC9+uqrX3zxhTaPo+z67ejoSHfiZ0i4rVwr3Dz4j//4j0Yn/gy2T9SvB9vAT5LrHCzaQ0fjx8ybN0+DnsGIiYkpLi5GOfnOO+/4vzV0KYYDlKjIWWR3DovFAsOA2csyQCDlmTt3LsYdbY44E4W8+kWwIYDXrl2r2SMor35RqUBfKOV1Y5aQkoawcu3w8DDqoRMnTly6dEmWEp/pF7HU2dnptkF320DDGOLlTY7Onj27YcMGWGIQPMNLAij33n77bXmH+GPHjmE4xpGScbbKZrMVFRUhwZRxgEAxnpubi+TXzzSN8BEMcK+99pq8+u3p6VmzZg2CTcIZ3SBAdv1iCIZ+MRyjoPdntsqNe/fu/eEPf5DLMxjYvcLCQiQibvr9nm1gZL98+bISCm9oaIiLi4uMjFTd01f8BIXe6Oio7GUBIqO2thbO0djYKEsZh1I3LS2tqalJ9qQSucLg4CCGs5KSEnm3TLjR1tY2NDRUX18v+5ahXwxziDSVXswmGeX0iy6VUb8oNXbs2IGtKfEcX6vVWlVVlZ+fL7z5nW04HA78BzILeVtl4Md88MEHqHr6+vqU2H5ggmNZUVHh5Zp9f0C1W+hEFptHlYkgVmhQQFwtXLhQr9drLWngCYLtvffeUyjYkExAv6mpqaRfuZBXvzt37sSmFDoRgIQP+l2xYoWg3+9sAwPH1q1blVvIEE1GRUVpaqoKFp2Xl6fcpUToyZMnT1osFj9nDyCPc+fOKSQPBir9Q4cO0VSVcigdbKRf2UFPlpaWQnd+plPYwo0bNxQ9Lm76/dY2MHCcOnVK0YEDHD16FL8NrqWFizLRmRcvXlQ6O8OxRA3np20gVYFCFD0ocjkc4REOxg/27duHYNOIbfDRb01NzY4dO7q6uvzZCAYBDOty7ZJHcNCPHz/e29vLTqZ+axsffvghSg2lR3PUUC+99FLwLT3tkbq6upycHKVbQZ4ydepUf4ZjjDiffvophzogNzcXkUe2oQR89Ot/sKkIPvplp8StVqvkc+ODg4NXr17l4OWFhYXI+79nGyg1EA2+fJmtOiB5FczExESNLD199uzZoqIiDg2hSzs6OiQrGS6+bt06CV90XX/Cl3iIiYn553/+Z7vdrtlLOZWDp379CTYVwU2/a9asgQYl24bRaExJSZF3lzziqt/HtgG/CgkJ8fF0CgLO97XPxgJXhIc7HI7gnqdCNTd79mzlThS5gi49ePBgdXW1tK+3trYKjzbzHdcVinyMBxzx1atXQyET+FjGoISzfv0JNrXAU796vR42LPk6wwsXLlRWVsq7Sx5x1e9j2+DmV6ztxYsX9/T0BHfCYjabV65cyactBDdCXJh2FAVyhytXrvh58bjvqWtcXBxqTbINeeGpX3+CTUXw1C/8Hq4P75dwHaPNZrtz546MN394R9DvY9u4efPm0qVL+TSsc67Pce3ateC2ja+++kp4MDUHpk+fjoMoQckIu6lTp3Kr/CCMq1ev8mlLO3DWr+RgUxGc9Ttr1izJthEVFaXELnlE0O9j2xgaGpLQR5InSZGwqHThBN+5e/euhApXmD0Q26uRkZEen879RIaHh2Ebor4i7KSEvZ0yZYqXNYsIaXDWr+RgUxGc9RseHg4lim1O58wY4OJivyX2rKSAoN/HtoFX+Ftsw6w91zluH8HxQLUh6iuqA10qNuzczhaI6lW01d/fL6o5BoIVISvqK5KPu865n7du3RL7LcI7/PUrLdhUBH/9SrMNCfp12zdRuyro97FtjI6OhoSEiGpbaImdYRPVR8hWhAUpg5Xr16+LumPTrQ/FKhmHDwdR1FcYyFZwOCR8UTIzZsxAZa3Z51oqAWf9Sg42FcFZv9Bgd3e3qK8wcCAkzDD7c00E0+9j2+AcBxIcUnVMmzYNP5PPlRg6SQMHg3/mePv2bW7dohE461dysKkIzvqVPCTiQNjtdrHfknz5te6v+n1sG1OnTr137x63h5TdvXs36G2DdSnPsJPWFr6FwyH7/owHQvzZZ58N7muv+cNZvzzH04mCv36l1d+cJ/wF/T62DQmXRvgzN8rzeEwUCDuEgu+PmnGbKxDbq5KvpeFsG+iT559/nltzGoGzfjlfuDUhcNYvNLhw4ULReynHhL+oXRX0+9g2JJzHF24aklDvcL64bUKQcJGx631YYntV2rU0OucVdX/84x9FfcXtSipRuzo4ODhr1ixRzRFPhLN+JQebiuCs36tXrxYUFIj6CkPCpYlu93tK0+9j24iPj8dOuz5O/YkNi21PwOFwfPzxxw0NDRK+qyISEhLKysrEPqZfWpf6c8teaGjoK6+8IuruLX8mRjs6OhITEyV/nfAIT/3Kcn9o4MNTvzabbWRkRNpDcNnMpNh7PiRLWNDvY9tAEMCy+FzfYjab33zzzaCf3UaXQl18nr9kMplWr14tuUtXrlyJg8Ln7q22trYjR45waEhT8NSvn8GmFnjqF2NxUlKS5K+npKQYjUY+j88S9Pvtowyx39h72RexGotG8k2ez19qbW3Nzc2V/HU/H4njO6hpUNnQcwyVgJt+/Qw2tcBTv+3t7RIeCieAwigzM5ODbbjq91vbQIUbExOTlZWlaB4xPDx88eLFY8eOKddE4LBjxw4cTqXDbmBgAJmmP09qEZ5mr/Szl48fP66FEWdC4KNf/4NNRXDT74MHD/yp9bktn+Wq329tIywsDAlLXV2dogmL0qtlBRR8DqcsK7RwWH6HwwJkWoaPfjksBxQ4kH5dsVgso6OjQhPfLQqLhAX1jl6vV+jqWD6rZQUUqKuQAyq3miHKxpGREf/DBQpZvnx5TU2NcoMOwtpgMCi0cUKnfMGhQeNXWr/wJJ3zigY/t8PB4YqKilz1+51twC327Nmze/fu+vp62Vt1OBwFBQUYmGTfciCDLkV1hWyioqJC9o3b7XaMFEajUZatISwgD+QNSpxWxXGHLfm5YDLhHUG/SiyGAf3u2LFDa8avtH5LS0vl0u/Ro0fT0tIWLFigRNJfVVW1atUqV/0+7frf69evRzWgRNaJaE5OTg766/bGgp7cvHlzW1ub7Asapqenl5eXyzXKh4aGYlBA5HV2dsqbW6EkwjZbW1tl3CbhEZR0cA4l9ItgKyws1KDxq0W/2E5lZSW22d7eLq9+LRZLV1fX+fPnXd982u1D8NWVK1fOnDlTxhNfMKuQkBDEtFwbVBe1tbWJiYnIAmS8yLW4uHjZsmXynpzEoIChAZHX0NAgV+QNDg6iJDKbzRo5oTXhKKFfBNtrr72mqekpV5TQL4qYuLg4efWLpBzizc7OlnG6CPotKiqCft3ed7cNnfMaO1QG165d8z9nQW2LOgMvgn4VSS9gxGRdCvz3TnQpIgPjgu+3d/kOhgbUzhAJnMP/atdkMqF2RhlOF93yRF79KhdsakFe/UJf6FLYsBLnETdt2jQyMoK8ATvsv+i86NeDbeBDFy5cQLWbk5Nz5MgRyc0PDw+jgzAGabbOEEAfoniEg6JXS0tLJafeNpstLS1t586dspfMAoi86OhoKAQ1rz+TiigxP//8c/xq8gzOyKVfDsGmFuTSL5L3XCfKlW5wo3nz5q1YscJgMPgzqehdvx5sg4Fqt7m5GQMH6imxl2fAUcvLy8+dO/eLX/wiuBeP9B10IEqumpoaHEt0qdhcAx6MA4kubWtrU3qKGQe9sbERQ0Z4eHhZWZnYR6tiD997772NGze2tLQotIfEE/FHvzyDTS34r98DBw589tlnOChKdymGXJQIer1+1qxZ0K/Y0ye+6Hdc29A5E0+4IgwAv3Pr1q14/cQRZGBgoKmpCQGHnsVrmtF2A9GGwwlNoifRRb5cudTb23vmzJnf/OY3+DyyFT77ib3q6upClYq9XbRoEfbzifkRhIHPnzhxAsFqsVhoIaYJR4J+JyTYVIQ/+i0uLoY6+Own9qqvrw8GEBsbu2rVKhQfT9Qvikuz2eyjfr3Zhs5ZnSFtyc/P//DDD9FfeAc7ERYW5vaY3+7ubowaZ8+enTp16ubNm61WK01NjAd6D12K+EPmgoMaEhKSlJQ0ZcoUlJbCZ0ZHR3HUb968iQP/yiuvJCcnHzlyhL8HxztBfoTiY8OGDQiAmTNnzp07d9KkScJnrl27hkP/q1/96s6dO+vWrfOzNCbkZax+EWx401W/LNiYfmfPnj1RwaYWVKTf9U4gSeg3IyMDryMjI930e/nyZbvdDv2OjIxgbPdRv0+wDQZ6qsQJEhA40r1791D76FzW+Vq2bBn2pqioKOgX0pALmHmFE3QpknRYfXt7u/C/6NXXXntt6dKl/sxNy8UmJw6HA/sJk0AIIsKEQ//iiy/ioJNbBDKu+sVBxDDhql8WbKRfUahIv5lOcNCxn3AyN/3Onz+fXXwvSr8+2YZAtBP2GuMIXNTtel5CLOhPVVymglzJ9dQom97ltqIcIQuuwUb6lQW16Bfe4Pp8rZycnL1790qeSRZnG6709PTAYPk8rpkINM6ePYvMlM/jmgklQO4J/WphhVfCDWQMbW1t/lxXLd02zpw5g3+NRqMqzJaQkd7e3lu3bp0+fZpsQ72wSRWYB10frzWQ8d+/fx+FJm/bYH6FF/60TagUljEMDAyIXVaMCBCgX/Y0pNbWVrINrcH0293dLXmuSKJtML/ys21CpZw9e5a94LasGCEvKDIePnyIF52dnTRPpSmEjF/nx1yRRNtgfuVn24QaYTNU7DXNU6kU18t+aJ5KUwgZv86PuSIptuHqV/60TagR14yB5qnUiDBDxWhoaCDb0A6u+u3u7pamXym24epXOpqn0hjCDBWD5qlUhzBDxSD9age3jF8nVb9SbMPVr4S2qeDQAq4zVAyap1IdrjNUDNKvRnDL+HVS9SvaNsb6lY7mqTTD2IyB5qnUhdsMFYP0qxHk0q9o2xjrVzqqczWD2wwVg+apVITbDBWD9KsFPGb8Okn6FW0bY/1KaJsSluBm7AwVg+apVMTYGSoG6Tfo8Zjx6yTpV7RtZGVlpaWl6ZwPyn7nnXdOnTrF3p8yZYrYTRHqAtkoIo+9xhCzefNm16d+Eqpgx44dW7Zs0ZF+tUd0dLRc+hVtG8KKb6hqn332WVqFSTtEOGGvJ0+ejJijo686SL+aRUb9Sn8mFUEQBKFByDYIgiAIEZBtEARBECKQaBs2m81qtT569Ki3t3fGjBn0KDTt4HA4cOgfPHhw+fLl0NBQWtRPjbjqF0dwwlegI7jhqt8pU6ZIu+NKhG1YLJaOjo6zZ8/eunULVhEZGYloKysru3LlCnsnKSkpNTWVxpHgA6MMDn19fT0C7rnnnluyZMlf/vIXo9EovKPX6xMTE+Pj42kN6oDFZDKZzeax+r106dL9+/ch25SUlISEBNJv8MFWrj19+rSg39HRUUTCiRMnBgYGfvjDH65fvz4uLs53/T7ZNux2e01NTVVV1eLFizE0jLfgMBtZMjMzR0ZG2Iqhon8cEXggV8DIcufOHeQE4y04zJYZb29vz8nJQfyVlpZS9Rk4CPp98803MTSMp1+MLMgDmH6Li4tdFxAl1AuECT3CJLzoly0zLkq/3mwDw0FdXV11dXVGRsaf/vQn75VsRETEdifwD4Qpap+f/exnrqtPE+qit7cXhhESElJZWSlctekRtsw4YA+uiImJQYxieKKpj4lFlH4h2CIn0O/hw4crKirKy8uRfnLbW0JeoN+9e/eGh4eP5xYCbJlx4Lt+x7WN4eHh9PT0+fPno64RpX/4B2IO/rF//344WG1tLU1cqA4YP44djqCoK7txoBF8er0eo9WKFSueGK+Ecvij3xMnTqD4wNE3m81Hjhwh/aoOWH5XV9cTEz43fNevZ9sYGBhAuYqxQ1SrriD46uvr29raUBc3NjbS427UAjKO7OxsJCkXLlyQtgUEH5KGhISEtLS0nTt3UsXJH//1i+KjpaUFA0diYmJraysVjmoB+kW6MG/ePEX168E22HR2R0eH/zPUaBLxt2XLlpMnT5JzBD6IOQwTsA3/x3oc7s7OTmxqdHSUJsp5IqN+4T1z585F4mk0Gkm/gY/dbod+CwsL/Z9d9K5fd9tAcYqYa29vlyu/QJkDz0Dhg4KXcpYAB3lKbm6uXDPaSFtQcW7YsAHHnWbJ+SC7flGvoOZA4olBhGarAhzod//+/bGxsbJsjel3zZo1yD/ctvk924BZscpA3vEdxlVeXo6fdP78eRk3S8hLVVXViy++KPv4Xltbiwwo2om8WybcgH5TU1NRGcirX2R+SGCh35aWFhk3S8jLnj174uLi5PIMgYaGBpSbEK9rufk929jpRAl548f09/cXFxeXlJTIvnHCfywWS1dXlxK+jiGssbERbmS1WildVZTk5GR4vxKzSTh80C+SP3pCfmDS3Nw8MjJSUVEh+5ah36amJr1e39PTI+j3O9uAqoeGhpQ7gbl9+3akLdu2baOL+gMQDAcGg0GhjWMgW7VqVV1dHd3Noxwmk2nSpEnKPdF2165d0G9mZibpN9BwOBxIx4WHossOConly5e76vc728Bbyg0cOudMGcooJCzV1dXKtUJIAKnKSy+9pOjFsvn5+Sh1U1NT6fyWQpSWliqt37y8PFQzSqS0hD9gQE9KSlLUzqHfmJiYrKwsVnB8axtIVaKiopS+yp5dmEFLTwca77777hdffKFoE4jpjIwMDDo0S6kEfPSLUQNNYAShgiNwQKmBRFy5UoOBI75161Yk/Uy/39rGyZMnc3NzFW2YkZKSQktPBxS9vb2zZ8/mMBDo9frY2FiyDSXgo19kmhs3bkRtSsvHBg7IGBYtWsRZv49tA371ySeftLa2StjWU089hX+/+eYb39sGZBuBw5kzZ5KTkzk0FBERMXXqVKvVKvkeNMIjPPW7YsWKsrIyso3AobOzMy4uTsIX2aFn+BIArvp9bBvwq5/+9KfSrnJBe67NPxE2PUXzVIHD2bNnubn4mjVrEGxkG/LCU79Lliy5cuXK8PAwzVMFAsgYPvrooyNHjoj9Ig66YBW+B4Cg38e20d3dvXTpUrENS2b58uU9PT1kG4EA/Hvy5MnchoCYmJiCggI+bWkHzvp94403ent76ZkxgUB/f/8LL7zg52Umvteagn4f28bdu3dRe/rTsCgwSCFb4dYc4YV79+6h8OTWHA79nTt3uDWnETjrNzw8HC1ya47wAgZSHA5uzQn6/dY2JOSbompbVyIjI5EfSfsuIS83b96cPn262G+5HXrfs5WIiIjr16+LbY7wDmf9oi1kG9K+S8iLBNsQjrvwQoJ+H9sGDERs2EmbGmOgLcpWAgRpYed66H2POca0adNoZlxe+Ov32rVror5CKIQEKbHjLkG5DKZfKWuJS26SIIgJh/RL+Mlj25g6dSoMhNuDkTnPxxFekJA5ul57I2H0uXXrFpUa8kL61SyQUn9/P88WmX4f2waCgOc56ps3b0ZGRnJrjvACDsTQ0JCor/iTq9psthkzZkj7LjEenPXL06II73Ce8Bf0K8U2WL4pzJGJbRttzZ07V+y3CCWYMmWK2Eub3K70F2UhOPQ8L9zSCJz1i3Fq4cKFYr9FKAFn2xD0+9g2li5d2t7enpmZ6fv3hbGDvRCVgV68eJGehBogREdHP3jwQNSJNbdjLerQ9/T0vP7662J3kvAOZ/3+27/9m4T7ywglQP799ddf2+1232/dcLuSSlTaJ+j3sW3Ex8fn5OQ4HA5RN5oK7YlqeHBwUPfXe8WJQGDdunUmk0nUoCOZ8+fPV1ZWcmhIU/DUL7cnmBG+gCO+evVq6Nf3dZf9uRpC0O/TrO3FixfDSWRfGWosRqMxJSVF6VYI33nrrbfKysp8tw3Jk1Q2m+3OnTv0ZBHZ4alfs9m8cuVKpVshfCcuLg61pu+2IRlX/X57AS5bC5ZD2J0+fRrOoXQrhO9IeMqQtIQFx33jxo0Svkg8ET76RUFz6tQppZ/RTYgCteZ7773H4V4oV/0+LbRdWlo6MDCg6CP7DQbD8uXLaYYq0PiXf/mXAwcOnDhxQrkmENa//OUvacRRCD765bAcECEWPstnQb8///nPEWDsz+9u96upqdmxY0dXV5dCDSNVwQ+jgSMAQYVbXV2t6KCDsM7JyaGl/ZQDxn/o0KGWlhaFts9nOSBCAhyWz4J+YU4e1hJfsGDB9OnT29raFHq2JWwJNQ6lKoFJeXn5vn37zp8/r8TGbTbbb37zG6vVqsTGCQYKjuPHj/f29iq0nPj777+fkZFB+g1AMJoXFxcrN2EwODh48eJF14zhew8XOXbsWGJiIoxL9nkki8WCOkahUYnwn9jY2P7+fgSf7Kvv2e32tLQ0o9EobUEIwndaW1tXrFiBrpb9djyTyXT58mXlShnCTzZt2gT9IjWX/d4G6Dc1NdVNv9+zjdDQ0JMnT27ZsqW9vV3G+QQkm0VFRWazWa4NEkqAInfDhg0YIJC3yrjZ7OzswsJCOqHFAWi2qakJJi2vfgcGBo4ePdrZ2SnXBgklqKioWLNmzcyZM+W9MiI9Pb28vNwtEXF/lCHkvX//ftQcyFxkKUgRcwUFBTArmtcOfBoaGnDoHQ6HLBOV2A48AxuU14cIL8iuX6vVigSWikVVwPQ7Ojoqi+KYfpOTk8f6kIcn4OJDCLiEhASUPH5eZd/W1nbs2LHGxkZ6iI0qwNCARBWx0tfX5+eFGSgxkfbu3LmTloHjjIz6NRgMsB+z2Uw5nyrAYUJRiPqgv7/fz5WevevX84PT58yZ09HRgebnz5+P5iUEDVpF1qNzrpBOeYqKwMGqr6/HiLNy5UocQQnnV5Gk1NXVYSMYdBS9HpQYD//1Ozg4iKMfHh6ONIL0qyJwsFpaWsrLy6HfQ4cOScgbfNHvuOttIGFBxOD7aDgjIwOFqo/BB8PAoHPu3Lmf/exnlGmqFBzuefPmlZWVhYSE7Nu3z8fgQ8AZjcaSkpKkpCRKUScWf/R7+PDhzz77DEMPzS6qFOQKS5cuLSgogPFDvz5mb77r19syTTAuRFtqaips4Mc//vHixYvZPLXHOVNEGxIceNTIyEheXh579hShXlBnXLhwwWKxIPju3LmDSEIkeIw/RJvJZMIg9etf/xqJQk9PD12mGQi46ffNN9+Mi4sbT78QLIaMX/3qV9BvcXGxovd+EhyAfru6utjj5kZHR6FfvV7vUb92ux0f6+zs9F2/T17dD55T5AQjCIzh4MGDt27dmjFjRlRUFPvAlStX2DvYM5qXCDJinbCcAPFntVqfe+45YebqwYMH7B1EJFKK2tpamtAINAT9YmhACjlWv5cuXbp//z5km5KSQvoNMuKdICdg/uGmX6SDAwMDP/zhD+EWovQrYlFYNoJUV1frnLUFYO8jBCm7DG4iIiK2O9E5awvhxj0MSTTKqAU2gozVL44gTScGN9HR0flOdH/V79mzZxEM06ZNk3ZlvJS1xHXOcYQujtImyEcUug+Z4AbpV7Mw/e7du3fx4sVvvPGGtI1ItA2CIAhCjaDQ7O7unj59uuRLlsg2CIIgNARbugL/Sj4ZSbZBEAShIdizAR8+fGgymaQVHGQbBEEQWoHNULHX7e3tZBsEQRCEN1wXV5U8T0W2QRAEoRVcV6+QPE9FtkEQBKEJXGeoGNLmqcg2CIIgNIHrDJXwjoR5KrINgiAITTB2fVVp81RkGwRBEMHP2BkqhoR5KrINgiCI4Ke/vz8uLo69vnTp0gsvvDB58mS8HhkZEbspsg2CIIjghz3Lkr2WvAgbg2yDIAiCEAHZBkEQBCECsg2CIAhCBGQbBEEQhAjINgiCIIIctmD4zZs3L1++PDIy0t/fv2fPnr/7u7+bP39+aGhoQkKCqGU6yTYIgiCCFoPB0NnZ+fHHH69fvz4yMjItLW3SpEnC/8JF4CiZmZnwklWrVmVlZfniH2QbBEEQQUhbW9t7770HM4BVtLS0ePwMuwa3qKjIZrOZzWb4x6xZs8rKyryvGUy2QRAEEVTAA/R6PQzAYrH4uGg8PpbpBGYTGxu7cePGkpKS8T5MtkEQBBE89Pb25ufnGwwGUacrBNY7qaqq2rBhQ21tbWho6NjPkG0QBEEECTU1Ne3t7Waz2eNw7zswHpPJlJiY2NjYOLZeIdsgCIIIBpqbm/v6+i5cuCDL1uLj46Ojo/V6/VgTItsgCIJQPVartaGhAaWGjNuEbZSXl6enp7s9cZ1sgyAIQt3YbLaCgoLW1lYJC4N7JzY2tr+/v7i42PUMOdkGQRCEuil0EhYWpsTG8/PzFy5cqNfrhXPsZBsEQRAqZmBg4MaNG8JD0ZWgvLx83759wlQV2QZBEISKOXTo0IEDBxRtIjY29uTJkyaTiZkT2QZBEIRa4VBqMHJzc8vKysg2CIIg1E1HR8fatWs5NLRkyZJLly7Z7fbQ0FCyDYIgCLVy+vRpo9HIp63169ebTKZNmzaRbRAEQaiSwcFBnfPuCj7NJSQkNDY2km0QBEGolXv37k2dOpVbc/Cnq1ev6ujcBkEQhEq5efPm9OnTxX7rqaeecv3zm2++8fGLYWFhf/7zn3VkGwRBECpleHg4PDxc1FfgGYJPuL72hdDQ0EePHjkcDrINgiAIVTI6Oir700S886Mf/QheRbZBEAShSkJCQux2u6ivoLwQJqlElRqM69evR0REkG0QBEGokrCwsGvXron6itiJKVdQZ0ybNk1H5zYIgiBUSmRk5NDQkKivuFYbOpEFh3DhFtkGQRCEKomIiLhx44aor7hVG6KKj8HBwVmzZunINgiCIFQKbAPpv9VqXbBgAYfmOjs74+LidGQbBEEQ6mXlypVms9l325A8SeVwOD766KMjR47oyDYIgiDUi95JUVGR71+Rdkq8p6fn5ZdfZouKk20QBEGolejo6FmzZgkrYSjH0aNH9+/fz16TbRAEQaiYffv2ZWZmKmobsKVJkyYtWbKE/Um2QRAEoWLmzJkTFRWlaMFRWlpqMBiEP8k2CIIg1M2xY8eSk5Pnzp0bEREh+8aLi4tTUlJgTsI7ZBsEQRDqJiws7IMPPkhLS+vs7JT3KVUoYr766quWlhbXN8k2CIIgVA+qgcLCQtQcra2tcjmH1Wo9evQorMjtfbINgiCIYCA+Pt7hcMTFxTU2Nvo/W2UwGOBA7e3tY02IbIMgCCJIWL9+fXR0tF6vP3DggOQz5Ha7HV/HC4+eoSPbIAiCCCbmzJljNpuzs7OPHz9eWVnpeir7iaBYqaurq66u3rNnT2Zm5ngfI9sgCIIIKkJDQ1taWnp7ezH0R0VFJScno/LwfsJjcHDQaDSePn161apVVquV3Q0+HmQbBEEQQciSJUv6+vpMJtOZM2fS09PhHPPmzQsJCVm4cCH7wPDw8LVr1+x2+7lz5/B+SkoKPuzLSRGyDYIgiKAl3kl9fT0sob+/HyZRVlbG/is8PHzmzJnwCYvFIuoU+v8DGj/Sv1FoCnQAAAAASUVORK5CYII=" alt="" name="图像4" width="530" height="237" align="bottom" border="0" />

  这里也可以应用一个简单的启发式策略——按秩合并。该方法使用秩来表示树高度的上界,在合并时,总是将具有较小秩的树根指向具有较大秩的树根。简单的说,就是总是将比较矮的树作为子树,添加到较高的树中。为了保存秩,需要额外使用一个与uset 同长度的数组,并将所有元素都初始化为0。(不常用,可以与路径压缩一起写)

模板:

 #include<iostream>
#include<stack>
#include<queue>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
int pre[];
int rank[];
int Find(int x)//使用递归写find函数,同时有路径压缩
{ /*if(x!=pre[x])//递归查找前导点
{
pre[x]=find(pre[x]);
}
return pre[x];*/
int a;
a=x;
while(pre[a]!=a)///循环方法查找前导点
{
a=pre[a];
}
int i=x,j;
while(i!=a)///路径压缩
{
j=pre[i];///记录x的前导结点
pre[i]=a;///将i的前导结点设置为r的根节点.
i=j;
}
return a; }
void Union(int x,int y)
{
int a,b;
a=Find(x);///x的根节点为a
b=Find(y);///y的根节点为b
if(a!=b)///如果a,b不是相同的根节点,则说明ab不是连通的
{
pre[a]=b;///将a,b连接,将a的前导点设置为b
}
}
int main()
{
int m,n;
while()
{
cin>>n;
if(n==) break;
cin>>m;
for(int i=; i<=n; i++)//初始化数组
{
pre[i]=i;
rank[i]=;
}
int x,y;
for(int i=; i<m; i++)
{
cin>>x>>y;
Union(x,y);
}
int sum=;
for(int i=; i<=n; i++)
{
if(pre[i]==i)
sum++;
}
cout<<sum-<<endl;
}
return ;
}

并查集(Union/Find)模板及详解的更多相关文章

  1. 【转】Eclipse Java注释模板设置详解

    Eclipse Java注释模板设置详解   设置注释模板的入口: Window->Preference->Java->Code Style->Code Template 然后 ...

  2. 【转载】 Eclipse注释模板设置详解

     Eclipse注释模板设置详解 网站推荐: 金丝燕网(主要内容是 Java 相关) 木秀林网(主要内容是消息队列)

  3. mongo 3.4分片集群系列之六:详解配置数据库

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...

  4. mongo 3.4分片集群系列之五:详解平衡器

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...

  5. SQLAlchemy02 /SQLAlchemy对数据的增删改查操作、属性常用数据类型详解

    SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...

  6. SQLAlchemy(二):SQLAlchemy对数据的增删改查操作、属性常用数据类型详解

    SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...

  7. POJ-1182 食物链---并查集(附模板)

    题目链接: https://vjudge.net/problem/POJ-1182 题目大意: 中文题,不多说. 思路: 给每个动物创建3个元素,i-A, i-B, i-C i-x表示i属于种类x,并 ...

  8. 并查集 P3367 【模板】并查集

    P3367 [模板]并查集 #include<iostream> #include<algorithm> #include<cstdio> #include< ...

  9. 并查集---体会以及模板&&How Many Tables - HDU 1213

    定义&&概念: 啥是并查集,就是将所有有相关性的元素放在一个集合里面,整体形成一个树型结构,它支持合并操作,但却不支持删除操作 实现步骤:(1)初始化,将所有节点的父亲节点都设置为自己 ...

随机推荐

  1. 关于Hibernate的部分知识总结

    [部分内容参考地址:https://www.cnblogs.com/woniu2219/p/7111857.html] Hibernate Hibernate是一个开放源代码的对象关系映射框架,它对J ...

  2. 【读书笔记 - Effective Java】01. 考虑用静态工厂方法代替构造器

    获取类的实例有两种方法: 1. 提供一个公有的构造器(最常用). 2. 提供一个公有的静态工厂方法(static factory method). // 静态工厂方法示例 public static ...

  3. 如何在tornado中以异步的方式调用同步函数

    问题 如何在tornado的coroutine中调用同步阻塞的函数 解决方案 使用python内置标准库的concurrent.futures.ThreadPoolExecutor和tornado.c ...

  4. 抓包之Charles For Mac 4.0+破解版

    前言:突然间发现好久没有写博客了,最近被公司的项目弄得脑壳疼

  5. Java中常见的比较

    一.StringBuffer.StringBuilder.String 1) 都是 final 类, 都不允许被继承; 2) String 长度是不可变的, StringBuffer.StringBu ...

  6. C# 发送Http协议 模拟 Post Get请求

    1.参数 paramsValue的格式 要和 Reques.ContentType一致, 如果 contentype  "application/x-www-form-urlencoded& ...

  7. 如何快速生成数据库字典(thinkphp5.0)

    本教程将教你快速生成数据库字典 示例代码使用PHP框架:Thinkphp5.0 PHP代码: /** * 生成数据库字典html * 可直接另存为再copy到word文档中使用 * * @return ...

  8. sea.js模块化工具

    sea.js 一. sea.js向全局中引入了两个变量seajs.define: 1.seajs用加载文件 seajs.use(deps,callback)异步引入入口模块 路径要以sea.js文件所 ...

  9. select epoll poll

    如何理解 Epoll select 和 poll 三种模型,能否用生活中的例子做比喻? 比如说你从某宝下单买了几个东西,这几个东西分别由N个快递员分别给你送过来.在某一时刻,你开始等快递.对于sele ...

  10. #if、#if defined 的使用

    #if的使用 if 后面接的是表达式 #if a==1 code -- #endif 如果#if后面的表达式能成立,就会把#if和#endif之间的代码编译进去 #if defined的使用 #if ...