bzoj 3140: [Hnoi2013]消毒
3140: [Hnoi2013]消毒
Description
最近在生物实验室工作的小T遇到了大麻烦。
由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a、b、c 均为正整数。为了实验的方便,它被划分为a*b*c个单位立方体区域,每个单位立方体尺寸
为1*1*1。用(i,j,k)标识一个单位立方体,1 ≤i≤a,1≤j≤b,1≤k≤c。这个实验皿已经很久没有人用了,现在,小T被导师要求将其中一些单位立方体区域进 行消毒操作(每个区域可以被重复消毒)。而由于严格的实验要求,他被要求使用一种特定 的F试剂来进行消毒。 这种F试剂特别奇怪,每次对尺寸为x*y*z的长方体区域(它由x*y*z个单位立方体组 成)进行消毒时,只需要使用min{x,y,z}单位的F试剂。F试剂的价格不菲,这可难倒了小 T。现在请你告诉他,最少要用多少单位的F试剂。(注:min{x,y,z}表示x、y、z中的最小 者。)
Input
Output
仅包含D行,每行一个整数,表示对应实验皿最少要用多少单位 的F试剂。
Sample Input
4 4 4
1 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 1 1
1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
Sample Output
HINT
对于区域(1,1,3)-(2,2,4)和(1,1,1)-(4,4,1)消毒,分别花费2个单位和1个单位的F试剂。
ACTY了不得!!!
——————题解——————
这题和棋盘覆盖问题还是挺像的,x*y*z区域(x<y<z),就相当于x个1*y*z的区域。
可是连边的话不是要三分图匹配了吗???!!!!
有些人可能会把整张图搞成二维(就是无视高),但这样答案是不对的。
好吧,注意到x*y*z<=5000,把x变为最小边,则x<=17,那么直接爆搜好了,选取一些面直接扔掉,次数加1,剩下的合成二维图跑一遍最大匹配。。
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
struct node
{
int a,b,c;
}P[N];
int T,num,tot,ans,a,b,c,i,j,k,I,J,K,x,p[N],f[N],h[];
int head[N],Next[N<<],to[N<<];
void SWAP(int&i,int&j,int&k)
{
if(a>b) swap(i,j);
if(a>c) swap(i,k);
if(b>c) swap(j,k);
}
void add(int x,int y)
{
tot++;
to[tot]=y;
Next[tot]=head[x];
head[x]=tot;
}
int dfs(int x,int M)
{
for(int i=head[x];i!=-;i=Next[i])
{
int y=to[i];
if(p[y]==M) continue;
p[y]=M;
if(f[y]==||dfs(f[y],M))
{
f[y]=x;
return ;
}
}
return ;
}
void Dfs(int x,int cnt)
{
if(cnt>=ans) return;
if(x>a)
{
int i;
tot=;
for(i=;i<=c;i++)
head[i]=-,f[i]=p[i]=;
for(i=;i<=num;i++)
if(h[P[i].a]==) add(P[i].b,P[i].c);
for(i=;i<=b;i++)
{
cnt+=dfs(i,i);
if(cnt>=ans) return;
}
ans=cnt;
}
h[x]=;
Dfs(x+,cnt+);
h[x]=;
Dfs(x+,cnt);
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&a,&b,&c);
num=; for(i=;i<=a;i++)
for(j=;j<=b;j++)
for(k=;k<=c;k++)
{
scanf("%d",&x);
if(x)
{
I=i;J=j;K=k;
SWAP(I,J,K);
num++;
P[num].a=I;P[num].b=J;P[num].c=K;
}
}
SWAP(a,b,c);
ans=a;
Dfs(,);
printf("%d\n",ans);
}
return ;
}
bzoj 3140: [Hnoi2013]消毒的更多相关文章
- 【刷题】BZOJ 3140 [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...
- BZOJ.3140.[HNOI2013]消毒(二分图匹配 匈牙利)
题目链接 不难想到每次一定是切一片. 如果是平面,很容易想到直接做二分图匹配.对于3维的? 可以发现min(a,b,c)的最大值只有\(\sqrt[3]{n}≈17\),我们暴力枚举这一最小值代表的是 ...
- 3140:[HNOI2013]消毒 - BZOJ
题目描述 Description 最近在生物实验室工作的小 T 遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为 a*b*c,a.b.c均为正整数.为了实验的方便,它被划 ...
- 【BZOJ】3140: [Hnoi2013]消毒
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3140 猜一发(显然)有结论:每次一定选择一个平面,即每次操作对答案的贡献都为$1$ 首先可 ...
- [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)
3140: [Hnoi2013]消毒 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 676[Submit][Status] ...
- [BZOJ 3140] 消毒
Link: BZOJ 3140 传送门 Solution: 挺好的一道暴力题 首先发现可以每次贪心选择宽度为1的一面,即$1*x*y,1*x*z,1*y*z$ 那么对于与该面垂直的面,相当于解决了一行 ...
- P3231 [HNOI2013]消毒
P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...
- BZOJ 3140 消毒(最小顶点覆盖)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3140 题意:最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格 ...
- bzoj千题计划295:bzoj3140: [Hnoi2013]消毒
http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...
随机推荐
- 科猫网项目总结(基于SSM框架)
1.配置文件的添加 SSM整合需要web.xml配置文件,springmvc的配置文件,spring和mybatis整合的配置文件. 1.web.xml文件的配置 1.在WEB-INF下新建web.x ...
- It is possible that this issue is resolved by uninstalling an existi
使用真机连接Android Studio测试时出现这样的错误: 解决方法: 设置Android Studio 中Instant Run中的选项为不选中 根据以下路径,找到Instant Run中的选项 ...
- 重拾Object--(一)初识
Java中的Object类有着特殊的意义,他是所有其它类的父类,查看Object类的源代码,可以发现代码不多,逻辑也很简单. Java所有类的源代码我们都可以在JDK的文件中查看,在JDK下会有一个名 ...
- 【JDK】JDK7与JDK8环境共存与切换:先安装jdk7,配置好环境变量后再安装jdk8
1.先安装JDK7 下载jdk-7u79-windows-i586.exe,安装后配置好环境变量JAVA_HOME,CLASSPATH,PATH java -version javac 指令都正常 2 ...
- Android控件——监听按钮的点击事件
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAroAAAFTCAIAAABZPDiZAAAgAElEQVR4nOy9918UWfb///1jdu2uBs
- jmeter===JMeter 中Random 随机函数的使用(转)
原文:http://blog.csdn.net/dreamtl/article/details/68952272 场景:在做接口测试时,比如说要求用户的手机号码不允许重复,那此时可以通过Random ...
- 64_m2
mimetic-devel-0.9.8-7.fc26.i686.rpm 12-Feb-2017 05:40 288474 mimetic-devel-0.9.8-7.fc26.x86_64.rpm 1 ...
- Lodash使用示例(比较全)
<html> <head> <meta name="viewport" content="width=device-width" ...
- vue-cli脚手架引入element UI的正确打开方式
element UI官网教程:http://element-cn.eleme.io/#/zh-CN/component/quickstart 1.完整引入,直接了当,但是组件文件不是按需加载,造成多余 ...
- python_day3学习笔记
set集合 python的set是一个无序不重复元素集,基本功能包括关系测试和消除重复元素. 集合对象还支持并.交.差.对称差等. sets 支持 x in set. len(set).和 for x ...