Lightning

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1099    Accepted Submission(s): 363

Problem Description
There are N robots standing on the ground (Don't know why. Don't know how). 

Suddenly the sky turns into gray, and lightning storm comes! Unfortunately, one of the robots is stuck by the lightning!

So it becomes overladen. Once a robot becomes overladen, it will spread lightning to the near one.

The spreading happens when: 
  Robot A is overladen but robot B not.
  The Distance between robot A and robot B is no longer than R.
  No other robots stand in a line between them.
In this condition, robot B becomes overladen.

We assume that no two spreading happens at a same time and no two robots stand at a same position.


The problem is: How many kind of lightning shape if all robots is overladen? The answer can be very large so we output the answer modulo 10007. If some of the robots cannot be overladen, just output -1. 

 
Input
There are several cases.
The first line is an integer T (T < = 20), indicate the test cases.
For each case, the first line contains integer N ( 1 < = N < = 300 ) and R ( 0 < = R < = 20000 ), indicate there stand N robots; following N lines, each contains two integers ( x, y ) ( -10000 < = x, y < = 10000 ), indicate the position of the robot. 
 
Output
One line for each case contains the answer.
 
Sample Input
3
3 2
-1 0
0 1
1 0
3 2
-1 0
0 0
1 0
3 1
-1 0
0 1
1 0
 
Sample Output
3
1
-1
 
Author
BUPT
 
Source
 
Recommend
zhuyuanchen520
 

首先是根据两点的距离不大于R,而且中间没有点建立一个图。

之后就是求生成树计数了。

Matrix-Tree定理(Kirchhoff矩阵-树定理)。Matrix-Tree定理是解决生成树计数问题最有力的武器之一。它首先于1847年被Kirchhoff证明。在介绍定理之前,我们首先明确几个概念:

1、G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数。

2、G的邻接矩阵A[G]也是一个n*n的矩阵, 并且满足:如果vi、vj之间有边直接相连,则aij=1,否则为0。

我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行、第r列同时去掉后得到的新矩阵,用Cr[G]表示。

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <list>
#include <string>
#include <math.h>
using namespace std; struct Point
{
int x,y;
Point(int _x = ,int _y = )
{
x = _x,y = _y;
}
Point operator - (const Point &b)const
{
return Point(x-b.x,y-b.y);
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
void input()
{
scanf("%d%d",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
};
bool onSeg(Point P,Line L)
{
return
((L.s-P)^(L.e-P)) == &&
(P.x-L.s.x)*(P.x-L.e.x) <= &&
(P.y-L.s.y)*(P.y-L.e.y) <= ;
}
int sqdis(Point a,Point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
} const int MOD = ;
int INV[MOD];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
if(a == )return ;
return inv(m%a,m)*(m-m/a)%m;
}
struct Matrix
{
int mat[][];
void init()
{
memset(mat,,sizeof(mat));
}
int det(int n)//求行列式的值模上MOD,需要使用逆元
{
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
mat[i][j] = (mat[i][j]%MOD+MOD)%MOD;
int res = ;
for(int i = ;i < n;i++)
{
for(int j = i;j < n;j++)
if(mat[j][i]!=)
{
for(int k = i;k < n;k++)
swap(mat[i][k],mat[j][k]);
if(i != j)
res = (-res+MOD)%MOD;
break;
}
if(mat[i][i] == )
{
res = -;//不存在(也就是行列式值为0)
break;
}
for(int j = i+;j < n;j++)
{
//int mut = (mat[j][i]*INV[mat[i][i]])%MOD;//打表逆元
int mut = (mat[j][i]*inv(mat[i][i],MOD))%MOD;
for(int k = i;k < n;k++)
mat[j][k] = (mat[j][k]-(mat[i][k]*mut)%MOD+MOD)%MOD;
}
res = (res * mat[i][i])%MOD;
}
return res;
}
}; Point p[];
int n,R;
bool check(int k1,int k2)//判断两点的距离小于等于R,而且中间没有点阻隔
{
if(sqdis(p[k1],p[k2]) > R*R)return false;
for(int i = ;i < n;i++)
if(i!=k1 && i!=k2)
if(onSeg(p[i],Line(p[k1],p[k2])))
return false;
return true;
}
int g[][];
int main()
{
//预处理逆元
for(int i = ;i < MOD;i++)
INV[i] = inv(i,MOD);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&R);
for(int i = ;i < n;i++)
p[i].input();
memset(g,,sizeof(g));
for(int i = ;i < n;i++)
for(int j = i+;j <n;j++)
if(check(i,j))
g[i][j] = g[j][i] = ;
Matrix ret;
ret.init();
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
if(i != j && g[i][j])
{
ret.mat[i][j] = -;
ret.mat[i][i]++;
}
printf("%d\n",ret.det(n-));
}
return ;
}

HDU 4305 Lightning(计算几何,判断点在线段上,生成树计数)的更多相关文章

  1. HDU - 4305 - Lightning 生成树计数 + 叉积判断三点共线

    HDU - 4305 题意: 比较裸的一道生成树计数问题,构造Krichhoof矩阵,求解行列式即可.但是这道题还有一个限制,就是给定的坐标中,两点连线中不能有其他的点,否则这两点就不能连接.枚举点, ...

  2. hdu 1086(计算几何入门题——计算线段交点个数)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2 ...

  3. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  4. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  5. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  6. HDU4305:Lightning(生成树计数+判断点是否在线段上)

    Lightning Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  8. hdu 4643 GSM 计算几何 - 点线关系

    /* hdu 4643 GSM 计算几何 - 点线关系 N个城市,任意两个城市之间都有沿他们之间直线的铁路 M个基站 问从城市A到城市B需要切换几次基站 当从基站a切换到基站b时,切换的地点就是ab的 ...

  9. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

随机推荐

  1. 檢查 cpu 的全部 gpio 狀態及設定

    $ adb root # cat /sys/kernel/debug/gpio

  2. Makefile 跟着走快点

    引言  - 从"HelloWorld"开始 Makefile 是Linux C 程序开发最重要的基本功. 代表着整个项目编译和最终生成过程.本文重点是带大家了解真实项目中那些简易的 ...

  3. 【VI Script】你不知道的脚本编程

    前言 近期,小黑在写程序的时候,经常会遇到一些重复性的工作.尤其是在写到QMH(Queued Message Handler)程序时,经常需要创建UI界面上的一些控件引用,并且在程序中捆绑成簇使用. ...

  4. linux 系统调用exec()

    系统调用execve()对当前进程进行替换,替换者为一个指定的程序,其参数包括文件名(filename).参数列表(argv)以及环境变量(envp).exec函数族当然不止一个,但它们大致相同,在 ...

  5. ubuntu 10.04打开错误

    打开ubuntu时,出现的错误如下: Invalid configuration file. File "E:\Ubuntu12.04.vmwarevm\Ubuntu12.04.vmx&qu ...

  6. English——Unit 2

    radiant radiate radical ideal ideology identical identification identify identity journal jounalist ...

  7. NOIP 2010

    tags: NOIP 并查集 动态规划 搜索 categories: 信息学竞赛 总结 机器翻译 乌龟棋 关押罪犯 引水入城 机器翻译 Solution 维护一个队列, 每次从词典中查词时将单词加入队 ...

  8. Delphi使程序的窗口出现在最前面并激活

    procedure setAppFront(); //使程序的窗口出现在最前面并激活 var pt, OldPt, NewPt: TPoint; begin //判断Application是否最小化, ...

  9. AC日记——「SCOI2016」美味 LiBreOJ 2016

    #2016. 「SCOI2016」美味 思路: 主席树: 代码: #include <bits/stdc++.h> using namespace std; #define maxa 26 ...

  10. 事务时间如何去掉wasted time

    事务时间如何去掉wasted time   事务时间 一个事务的时间是指持续时间,事务会完全记录下从事务开始到事务结束之间的时间差,那么事务的时间能真实地反映业务操作的时间吗?不能,就好像人用手按秒表 ...