分布式事务概述--2pc的概念
转载自一个大拿:http://www.cnblogs.com/LBSer/p/4715395.html
前阵子从支付宝转账1万块钱到余额宝,这是日常生活的一件普通小事,但作为互联网研发人员的职业病,我就思考支付宝扣除1万之后,如果系统挂掉怎么办,这时余额宝账户并没有增加1万,数据就会出现不一致状况了。
上述场景在各个类型的系统中都能找到相似影子,比如在电商系统中,当有用户下单后,除了在订单表插入一条记录外,对应商品表的这个商品数量必须减1吧,怎么保证?!在搜索广告系统中,当用户点击某广告后,除了在点击事件表中增加一条记录外,还得去商家账户表中找到这个商家并扣除广告费吧,怎么保证?!等等,相信大家或多或多少都能碰到相似情景。
这些问题本质上都可以抽象为:当一个表数据更新后,怎么保证另一个表的数据也必须要更新成功。
1 本地事务
还是以支付宝转账余额宝为例,假设有
支付宝账户表:A(id,userId,amount)
余额宝账户表:B(id,userId,amount)
用户的userId=1;
从支付宝转账1万块钱到余额宝的动作分为两步:
1)支付宝表扣除1万:update A set amount=amount-10000 where userId=1;
2)余额宝表增加1万:update B set amount=amount+10000 where userId=1;
如何确保支付宝余额宝收支平衡呢?有人说这个很简单嘛,可以用事务解决。
1
2
3
4
5
|
Begin transaction update A set amount=amount-10000 where userId=1; update B set amount=amount+10000 where userId=1; End transaction commit ; |
非常正确!如果你使用spring的话一个注解就能搞定上述事务功能。
1
2
3
4
5
|
@Transactional (rollbackFor=Exception. class ) public void update() { updateATable(); //更新A表 updateBTable(); //更新B表 } |
如果系统规模较小,数据表都在一个数据库实例上,上述本地事务方式可以很好地运行,但是如果系统规模较大,比如支付宝账户表和余额宝账户表显然不会在同一个数据库实例上,他们往往分布在不同的物理节点上,这时本地事务已经失去用武之地。
既然本地事务失效,分布式事务自然就登上舞台。
2 分布式事务—两阶段提交协议
两阶段提交协议(Two-phase Commit,2PC)经常被用来实现分布式事务。一般分为协调器C和若干事务执行者Si两种角色,这里的事务执行者就是具体的数据库,协调器可以和事务执行器在一台机器上。
1) 我们的应用程序(client)发起一个开始请求到TC;
2) TC先将<prepare>消息写到本地日志,之后向所有的Si发起<prepare>消息。以支付宝转账到余额宝为例,TC给A的prepare消息是通知支付宝数据库相应账目扣款1万,TC给B的prepare消息是通知余额宝数据库相应账目增加1w。为什么在执行任务前需要先写本地日志,主要是为了故障后恢复用,本地日志起到现实生活中凭证 的效果,如果没有本地日志(凭证),容易死无对证;
3) Si收到<prepare>消息后,执行具体本机事务,但不会进行commit,如果成功返回<yes>,不成功返回<no>。同理,返回前都应把要返回的消息写到日志里,当作凭证。
4) TC收集所有执行器返回的消息,如果所有执行器都返回yes,那么给所有执行器发生送commit消息,执行器收到commit后执行本地事务的commit操作;如果有任一个执行器返回no,那么给所有执行器发送abort消息,执行器收到abort消息后执行事务abort操作。
注:TC或Si把发送或接收到的消息先写到日志里,主要是为了故障后恢复用。如某一Si从故障中恢复后,先检查本机的日志,如果已收到<commit >,则提交,如果<abort >则回滚。如果是<yes>,则再向TC询问一下,确定下一步。如果什么都没有,则很可能在<prepare>阶段Si就崩溃了,因此需要回滚。
现如今实现基于两阶段提交的分布式事务也没那么困难了,如果使用java,那么可以使用开源软件atomikos(http://www.atomikos.com/)来快速实现。
不过但凡使用过的上述两阶段提交的同学都可以发现性能实在是太差,根本不适合高并发的系统。为什么?
1)两阶段提交涉及多次节点间的网络通信,通信时间太长!
2)事务时间相对于变长了,锁定的资源的时间也变长了,造成资源等待时间也增加好多!
正是由于分布式事务存在很严重的性能问题,大部分高并发服务都在避免使用,往往通过其他途径来解决数据一致性问题。
3 使用消息队列来避免分布式事务
如果仔细观察生活的话,生活的很多场景已经给了我们提示。
比如在北京很有名的姚记炒肝点了炒肝并付了钱后,他们并不会直接把你点的炒肝给你,往往是给你一张小票,然后让你拿着小票到出货区排队去取。为什么他们要将付钱和取货两个动作分开呢?原因很多,其中一个很重要的原因是为了使他们接待能力增强(并发量更高)。
还是回到我们的问题,只要这张小票在,你最终是能拿到炒肝的。同理转账服务也是如此,当支付宝账户扣除1万后,我们只要生成一个凭证(消息)即可,这个凭证(消息)上写着“让余额宝账户增加 1万”,只要这个凭证(消息)能可靠保存,我们最终是可以拿着这个凭证(消息)让余额宝账户增加1万的,即我们能依靠这个凭证(消息)完成最终一致性。
3.1 如何可靠保存凭证(消息)
有两种方法:
3.1.1 业务与消息耦合的方式
支付宝在完成扣款的同时,同时记录消息数据,这个消息数据与业务数据保存在同一数据库实例里(消息记录表表名为message);
1
2
3
4
5
|
Begin transaction update A set amount=amount-10000 where userId=1; insert into message(userId, amount,status) values (1, 10000, 1); End transaction commit ; |
上述事务能保证只要支付宝账户里被扣了钱,消息一定能保存下来。
当上述事务提交成功后,我们通过实时消息服务将此消息通知余额宝,余额宝处理成功后发送回复成功消息,支付宝收到回复后删除该条消息数据。
3.1.2 业务与消息解耦方式
上述保存消息的方式使得消息数据和业务数据紧耦合在一起,从架构上看不够优雅,而且容易诱发其他问题。为了解耦,可以采用以下方式。
1)支付宝在扣款事务提交之前,向实时消息服务请求发送消息,实时消息服务只记录消息数据,而不真正发送,只有消息发送成功后才会提交事务;
2)当支付宝扣款事务被提交成功后,向实时消息服务确认发送。只有在得到确认发送指令后,实时消息服务才真正发送该消息;
3)当支付宝扣款事务提交失败回滚后,向实时消息服务取消发送。在得到取消发送指令后,该消息将不会被发送;
4)对于那些未确认的消息或者取消的消息,需要有一个消息状态确认系统定时去支付宝系统查询这个消息的状态并进行更新。为什么需要这一步骤,举个例子:假设在第2步支付宝扣款事务被成功提交后,系统挂了,此时消息状态并未被更新为“确认发送”,从而导致消息不能被发送。
优点:消息数据独立存储,降低业务系统与消息系统间的耦合;
缺点:一次消息发送需要两次请求;业务处理服务需要实现消息状态回查接口。
3.2 如何解决消息重复投递的问题
还有一个很严重的问题就是消息重复投递,以我们支付宝转账到余额宝为例,如果相同的消息被重复投递两次,那么我们余额宝账户将会增加2万而不是1万了。
为什么相同的消息会被重复投递?比如余额宝处理完消息msg后,发送了处理成功的消息给支付宝,正常情况下支付宝应该要删除消息msg,但如果支付宝这时候悲剧的挂了,重启后一看消息msg还在,就会继续发送消息msg。
解决方法很简单,在余额宝这边增加消息应用状态表(message_apply),通俗来说就是个账本,用于记录消息的消费情况,每次来一个消息,在真正执行之前,先去消息应用状态表中查询一遍,如果找到说明是重复消息,丢弃即可,如果没找到才执行,同时插入到消息应用状态表(同一事务)。
1
2
3
4
5
6
7
8
|
for each msg in queue Begin transaction select count (*) as cnt from message_apply where msg_id=msg.msg_id; if cnt==0 then update B set amount=amount+10000 where userId=1; insert into message_apply(msg_id) values (msg.msg_id); End transaction commit ; |
Ebay的研发人员早在2008年就提出了应用消息状态确认表来解决消息重复投递的问题:http://queue.acm.org/detail.cfm?id=1394128。
参考文献
Dan Pritchett,Base: An Acid Alternative,http://queue.acm.org/detail.cfm?id=1394128
程立,大规模SOA系统中的分布式事务处理
mysql两阶段提交,http://blog.csdn.net/jesseyoung/article/details/37970271
分布式事务概述--2pc的概念的更多相关文章
- 分布式事务(1)---2PC和3PC理论
分布式事务(1)---2PC和3PC理论 分布式事物基本理论:基本遵循CPA理论,采用柔性事物特征,软状态或者最终一致性特点保证分布式事物一致性问题. 分布式事物常见解决方案: 2PC两段提交协议 3 ...
- 分布式事务的2PC、3PC和TCC
1.2PC协议 2PC 是二阶段提交(Two-phase Commit)的缩写,顾名思义,这个协议分两阶段完成.第一个阶段是准备阶段,第二个阶段是提交阶段,准备阶段和提交阶段都是由事务管理器(协调者) ...
- 面试被问分布式事务(2PC、3PC、TCC),这样解释没毛病!
整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 更多优选 一口气说出 9种 分布式ID生成方式,面试官有点懵了 ...
- 分布式事务一2PC
分布式事务解决方案之2PC(两阶段提交) 前面已经学习了分布式事务的基础理论,以理论为基础,针对不同的分布式场景业界常见的解决方案有2PC.TCC.可靠消息最终一致性.最大努力通知这几种. 3.1.什 ...
- 分布式事务之深入理解什么是2PC、3PC及TCC协议?
导读 在上一篇文章<[分布式事务]基于RocketMQ搭建生产级消息集群?>中给大家介绍了基于RocketMQ如何搭建生产级消息集群.因为本系列文章最终的目的是介绍基于RocketMQ的事 ...
- 如何选择分布式事务形态(TCC,SAGA,2PC,补偿,基于消息最终一致性等等)
各种形态的分布式事务 分布式事务有多种主流形态,包括: 基于消息实现的分布式事务 基于补偿实现的分布式事务(gts/fescar自动补偿的形式) 基于TCC实现的分布式事务 基于SAGA实现的分布式事 ...
- 如何选择分布式事务形态(TCC,SAGA,2PC,基于消息最终一致性等等)
各种形态的分布式事务 分布式事务有多种主流形态,包括: 基于消息实现的分布式事务 基于补偿实现的分布式事务 基于TCC实现的分布式事务 基于SAGA实现的分布式事务 基于2PC实现的分布式事务 这些形 ...
- 分布式事务之如何基于RocketMQ的事务消息特性实现分布式系统的最终一致性?
导读 在之前的文章中我们介绍了如何基于RocketMQ搭建生产级消息集群,以及2PC.3PC和TCC等与分布式事务相关的基本概念(没有读过的读者详见
- 分布式事务(2)---TCC理论
分布式事务(2)---TCC理论 上篇讲过有关2PC和3PC理论知识,博客:分布式事务(1)---2PC和3PC理论 我的理解:2PC.3PC还有TCC都蛮相似的.3PC大致是把2PC的第一阶段拆分成 ...
随机推荐
- 深入了解java虚拟机(JVM) 第四章 对象的创建
一.对象的创建过程 对象的创建过程大致可以分为六步,其中对象的分配尤为重要: 二.对象分配内存 一般来说对象分配内存有两种方式: 第一种是指针碰撞,这是一种比较理想的方式:如果Java堆是绝对规整的: ...
- VMware安装linux系统报错:已将该虚拟机配置为使用 64 位客户机操作系统。但是,无法执行 64 位操作。
检测问题所在: 下载LeoMoon CPU-V 检查一下CPU VT-x状态是否启用 地址:http://download.csdn.net/detail/qq_22860341/9858011 如果 ...
- nginx高性能WEB服务器系列之七--nginx反向代理
nginx系列友情链接:nginx高性能WEB服务器系列之一简介及安装https://www.cnblogs.com/maxtgood/p/9597596.htmlnginx高性能WEB服务器系列之二 ...
- php中签名公钥、私钥(SHA1withRSA签名)以及AES(AES/ECB/PKCS5Padding)加密解密详解
由于http请求是无状态,所以我们不知道请求方到底是谁.于是就诞生了签名,接收方和请求方协商一种签名方式进行验证,来取得互相信任,进行下一步业务逻辑交流. 其中签名用得很多的就是公钥私钥,用私钥签名, ...
- ubuntu->错误
1.dpkg *** locked 原因:安装某个包不成功, 可以使用命令 dpkg --configure -a 来重启中断的安装过程 如果屡次安装不成功放弃安装,则删除 lock 2.flashp ...
- sql 列集合
STUFF((SELECT ','+CAST( TYZ_Bh as varchar(10)) FROM #1 where 片区划分='江东' for xml path('')),1,1,'')
- 2D激光SLAM算法比较+cartographer
Hector slam: Hector slam利用高斯牛顿方法解决scan-matching问题,对传感器要求较高. 缺点:需要雷达(LRS)的更新频率较高,测量噪声小.所以在制图过程中,需要rob ...
- 如果你创建了类似于下面的 Twitter 元素,那么它相关的类定义是啥样子的?
代码: <Twitter username='tylermcginnis33'> {(user) => user === null ? <Loading /> : < ...
- [转] Vagrant入门
[From] https://www.cnblogs.com/davenkin/p/vagrant-virtualbox.html 简单地说,Vagrant让我们可以通过代码的方式快速地.可重复地创建 ...
- 基于CIDR的IP分组转发算法
话不多说,直接上运行截图 #include<iostream> #include<vector> using namespace std; struct ...