Day1

第一题

水题

第二题

题意:一个n*m的字符矩阵从左上到右下,经过字符形成回文串的路径数。n≤500

回文串,考虑两段往中间DP。

f[k][x][y]表示走了k步,左上点横坐标为x,右下点横坐标为y的路径数。

两端2*2四种情况转移,k步这维滚动。

第三题

题意:区间加数,区间覆盖,询问区间x次幂和。n≤10^5。

主要难点在区间加数时维护x次幂和……实际上就是简单的二项式展开。

Σ(a+b)^n=Σ[ΣC(n,r)*a^(n-r)*b^r]=Σ[C(n,r)*Σa^(n-r)*b^r]  r=0~n

只要维护x次幂和就好了。

坑:枚举排列!!!

【比赛】洛谷夏令营NOIP模拟赛的更多相关文章

  1. [洛谷0925]NOIP模拟赛 个人公开赛 OI

     P3395 路障 题目背景 此题约为NOIP提高组Day1T1难度. 题目描述 B君站在一个n*n的棋盘上.最开始,B君站在(1,1)这个点,他要走到(n,n)这个点. B君每秒可以向上下左右的某个 ...

  2. 洛谷CON1041 NOIP模拟赛一试

    A T2-power of 2 题目描述 是一个十分特殊的式子. 例如: n=0时 =2 然而,太大了 所以,我们让对10007 取模 输入输出格式 输入格式: n 输出格式:  % 10007 输入 ...

  3. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  4. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  5. 【洛谷】xht模拟赛 题解

    前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...

  6. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  7. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  8. NOIP模拟赛 篮球比赛2

    篮球比赛2(basketball2.*) 由于Czhou举行了众多noip模拟赛,也导致放学后篮球比赛次数急剧增加.神牛们身体素质突飞猛进,并且球技不断精进.这引起了体育老师彩哥的注意,为了给校篮球队 ...

  9. NOIP模拟赛-2018.11.6

    NOIP模拟赛 今天想着反正高一高二都要考试,那么干脆跟着高二考吧,因为高二的比赛更有技术含量(我自己带的键盘放在这里). 今天考了一套英文题?发现阅读理解还是有一些困难的. T1:有$n$个点,$m ...

随机推荐

  1. 无法启动此程序,因为计算机中丢失 zlibd.dll【OSG】

    在配置OSG的过程中遇到了这个问题.记录一下. zlibd.dll这个DLL可以在第三方库3rdParty里面找到.找到之后复制到OSG的bin目录下即可.

  2. 记一次dll强命名冲突事件

    一  问题的出现 现在要做一个net分布式平台,平台涉及多个服务之间调用问题,最基础的莫过于sso.由于我们的sso采用了wcf一套私有框架实现,另外一个webapi服务通过接口调用sso服务.由于s ...

  3. 利用Vue v-model实现一个自定义的表单组件

    原文请点此链接  http://blog.csdn.net/yangbingbinga/article/details/61915038

  4. Jedis源码解析——Jedis和BinaryJedis

    1.基本信息 先来看看他们的类定义: public class Jedis extends BinaryJedis implements JedisCommands, MultiKeyCommands ...

  5. phpcms开启在线编辑模版 方法

    目录:\caches\configs\system.php 将:第20行 'tpl_edit'=> 0   修改为  'tpl_edit'=> 1   (0:默认的,不开启:     1: ...

  6. str.substring(beginIndex,endIndex)-008

    // 将字符串str前n位放在后面,返回新的字符串 public String headToTail(String str,int n){ if(n==0){ System.out.println(s ...

  7. [C/C++] C++抽象类

    转自:http://www.cnblogs.com/dongsheng/p/3343939.html 一.纯虚函数定义 纯虚函数是在基类中声明的虚函数,它在基类中没有定义,但要求任何派生类都要定义自己 ...

  8. BZOJ 2460 元素(贪心+线性基)

    显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...

  9. MD5 十六进制加密

    MD5的加密方法很多,今天说下MD5的十六进制加密···先贴方法···· class Program { static void Main(string[] args) { //202cb962ac5 ...

  10. 转:浅谈Spectral Clustering 谱聚类

    浅谈Spectral Clustering Spectral Clustering,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Cluste ...