https://loj.ac/problem/2351

参考:https://www.cnblogs.com/ivorysi/p/9144676.html

但是参考博客讲解太吓人了,我们换一种通俗易懂的方法讲。

首先肯定是能想到容斥和子集和的,但是很尴尬的是,裸容斥的复杂度是O(2^l)的显然过不去。

我们考虑l特别小,且字符只有三种,话句话讲至少有一个字符个数<=6。

那我们就试图分情况讨论,分成以0,1,?为目标特殊处理。

同时我们:

设数组f[0][i]表示讨论0时i的二进制1集合属于j的二进制1集合时sigma(w[j])

设数组f[1][i]表示讨论0时j的二进制1集合属于i的二进制1集合时sigma(w[j])

这两个数组都能够在O(2^l)求出,接下来利用他们来导出答案。

PS:令x为原数中0集合,y为原数中1集合,z为原数中?集合。eg:原数101?,x=0100,y=1010,z=0001。

?

最简单的情况,暴力枚举即可。

0

枚举x的子集i。

我们求f[0][i|y]的目的就是将?和0空出来,再将0慢慢填上1达到容斥的效果。

(容斥不太好用语言表述还请见谅,请读者自行举例感受容斥。)

显然我们只填1的时候求的是全集,后面我们就要将0填上1来减去我们将0视为1所带来的多于的解(以及加上我们多减的)。

所以当当前的数i有偶数个1时要加,反之减。

1

枚举y的子集i。

我们求f[1][i|z]的目的同理将1和?填上,再将1慢慢填上0达到容斥的效果。

(容斥不太好用语言表述还请见谅,请读者自行举例感受容斥。)

显然我们?和1全填的时候求的是全集,后面我们就要将1填上0来减去我们将1视为0所带来的多于的解(以及加上我们多减的)。

所以当当前的数i比其y相差k个1时,k为偶要加,反之减。

(总之只要有耐心且不像我这么傻就能做出来的啦!~)

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int L=;
int k,q,f[][L],w[L],calc[L];
char s[L];
int main(){
scanf("%d%d",&k,&q);
cin>>s;
for(int i=;i<(<<k);i++)w[i]=f[][i]=f[][i]=s[i]-'';
for(int i=;i<(<<k);i++)calc[i]=calc[i>>]+(i&);
for(int i=;i<(<<k);i<<=){
for(int j=;j<(<<k);j++){
if(j&i)f[][j]+=f[][j^i],f[][j^i]+=f[][j];
}
}
while(q--){
cin>>s;
int x=,y=,z=,ans=;
for(int i=;i<k;i++){
if(s[i]=='')x|=(<<(k-i-));
else if(s[i]=='')y|=(<<(k-i-));
else z|=(<<(k-i-));
}
if(calc[x]<=){
for(int i=x;;i=(i-)&x){
if(calc[i]&)ans-=f[][i|y];
else ans+=f[][i|y];
if(!i)break;
}
}else if(calc[y]<=){
for(int i=y;;i=(i-)&y){
if(calc[i^y]&)ans-=f[][i|z];
else ans+=f[][i|z];
if(!i)break;
}
}else{
for(int i=z;;i=(i-)&z){
ans+=w[i|y];
if(!i)break;
}
}
printf("%d\n",ans);
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

LOJ2351:[JOI2017/2018决赛]毒蛇越狱——题解的更多相关文章

  1. LOJ2350:[JOI2017/2018决赛]月票购买——题解

    https://loj.ac/problem/2350 比较简单的题,为什么我实现得这么sb? 第一个包其实已经给了提示(第一个包的解法就是在S->T所有最短路径上的所有点到V的最短路的最小值. ...

  2. LOJ#2351. 「JOI 2018 Final」毒蛇越狱

    LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...

  3. 【题解】毒蛇越狱(FWT+容斥)

    [题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...

  4. [JOI2017/2018]美術展

    [JOI2017/2018]美術展 题目大意: 有\(n(n\le5\times10^5)\)个物品,每个物品有两个属性:尺寸\(A_i\)和收益\(B_i\).从中选取一个子集,总收益为\(\sum ...

  5. 【LOJ】#2351. 「JOI 2017/2018 决赛」毒蛇越狱

    题解 没啥特别好的算法,是个讨论题,由于0 1 ?三类数位中最少的不会超过6 如果1不超过6,那么记录\(f1(S)\)为 \(\sum_{T \subset S} val(T)\)这个可以通过类似F ...

  6. 2018湘潭邀请赛 AFK题解 其他待补...

    A.HDU6276:Easy h-index Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. Tsinghua 2018 DSA PA2简要题解

    反正没时间写,先把简要题解(嘴巴A题)都给他写了记录一下. upd:任务倒是完成了,我也自闭了. CST2018 2-1 Meteorites: 乘法版的石子合并,堆 + 高精度. 写起来有点烦貌似. ...

  8. [HNOI2008]越狱 题解(容斥原理+快速幂)

    [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...

  9. 【LOJ】#2349. 「JOI 2017/2018 决赛」团子制作

    题解 有意思的一个dp,我们对G计数,发现如果不在同一条对角线上的G肯定不会互相影响,所以我们对于每一条对角线dp dp的方式是枚举这个G以什么方式放,横着还是竖着,还是不放 代码 #include ...

随机推荐

  1. 100万套PPT模板,包含全宇宙所有主题类型PPT,绕宇宙100圈,持续更新

    100万套PPT模板,包含全宇宙所有主题类型PPT(全部免费,都是精品,没有一张垃圾不好看的PPT,任何一张PPT拿来套入自己的信息就可以立马使用),绕宇宙100圈,任意一个模板在某文库上都价不菲.强 ...

  2. 「国庆训练」Bomb(HDU-5934)

    题意 给定\(n\)个炸弹,每个炸弹的坐标与代价与影响范围给定,炸弹会引爆影响范围内其他所有炸弹.求引爆所有炸弹的最小代价. 分析 先做\(n^2\)的循环,然后建图,对\(i\)能引爆\(j\)建边 ...

  3. Qt-QML-Slider-滑块-Style

    感觉滑块这个东西,可以算是一个基本模块了,在我的项目中也有这个模块,今天我将学一下一下滑块的使用以及美化工作. 想学习滑块,那就要先建立一个滑块,新建工程什么的这里就省略了,不会的可以看我前面的几篇文 ...

  4. Python拼接字符串的7种方法

    1.直接通过+操作: s = 'Python'+','+'你好'+'!'print(s) 打印结果: Python,你好! 2.通过join()方法拼接: 将列表转换成字符串 strlist=['Py ...

  5. selenium,unittest——参数化url,并多线程加快脚本运行速度

    利用参数化连续打开网页: #encoding=utf-8import unittestimport paramunittestimport timefrom selenium import webdr ...

  6. TPO-14 C1 Locate a political book

    TPO-14 C1 Locate a political book 第 1 段 1.Listen to a conversation between the student and librarian ...

  7. Django - day01 快速回忆ORM操作

    Django - day01 Model的增删改查找 得益于Django的ORM模型,用面向对象的思想来操作数据库使得数据库的操作一切变得简洁了很多. 0. 建表 在应用下的models.py中建立一 ...

  8. python切片技巧

    写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz” for x in range(101): p ...

  9. Solium代码测试框架

    Solium, 在solid中,Linter用于标识和修复样式&安全问题 //调用测试 solium -d contracts --fix 源代码名称:Solium 源代码网址:http:// ...

  10. C语言实训——扑克牌洗牌程序

    说明此程序本来是21点扑克程序的一个被调函数,在这里我单独将它拿出来作为一个小程序. #include<stdio.h> #include<time.h> #include&l ...