传送门

Description

给你一个\(n~\times~m\)的矩阵,一开始你在第\(r\)行第\(c\)列。你的上下移动不受限制,向左最多移动\(x\)次,向右最多移动\(y\)次。求你最多能到多少个点。包括起始点。

Input

第一行是\(n\)和\(m\),代表矩阵规模。

第二行是\(r\)和\(c\),代表你的位置

第三行是\(x\)和\(y\),代表移动限制

下面\(n\)行每行\(m\)个字符,有且仅有'.'和''两种。如果第\(i\)行第\(j\)列是''代表你不能经过这个点。

Output

输出一行一个数代表能到的最多点数

Sample Input

4 5
3 2
1 2
.....
.***.
...**
*....

Sample Output

10

Hint

\(For~All:\)

\(0~\leq~n,m,r,c~\leq~2000\),\(0~\leq~x,y~\leq~10^9\)

Solution

朴素的\(bfs\)显然是对的,可以状态太多存不下。

考虑如果从\((sx,sy)\)点到一个点\((x,y)\)时,假设共向右走了\(r\)步,向左走了\(l\)步,显然\(r-l\)是一个定值。具体的,\(r-l~=~y-sy\)。于是,对于任意一个目标\((x,y)\),发现\(l\)事实上与\(r\)线性正相关。对于一个点,显然到该点的\(r\)越小越好,同时由于\(l\)和\(r\)线性正相关,所以最小化\(r\)的同时,\(l\)已经被最小化了。于是可以直接建图跑最短路,所有向右的边权为1,其他边权为0。跑完后扫描整个地图就可以判断合法性了。

这里的一个新姿势是\(0/1bfs\)。当边权只有\(0/1\)时,可以使用双端队列进行bfs,具体的,当当前边的权值时\(0\)时,将终点压入队首,否则压入队尾。考虑这么做的正确性:易证任意一时刻队列中的点dist差值不超过1。于是正确性显然。\(0/1bfs\)的复杂度为\(O(V+E)\)。相比dij少了一个log。

Code

#include<queue>
#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO{
char buf[110];
} template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {putchar('-');x=-x;}
rg int top=0;
do {
IO::buf[++top]=x%10+'0';
} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &a,T &b) {
T _temp=a;a=b;b=_temp;
} const int maxn = 2010; const int fx[]={0,-1,0,1};
const int fy[]={1,0,-1,0};
const int fv[]={1,0,0,0}; int n,m,sx,sy,x,y;
int MU[maxn][maxn];
char mp[maxn][maxn]; std::deque<int>Qx,Qy; int main() {
qr(n);qr(m);qr(sx);qr(sy);qr(x);qr(y);
for(rg int i=1;i<=n;++i) scanf("%s",mp[i]+1);
memset(MU,0x3f,sizeof MU);
MU[sx][sy]=0; Qx.push_front(sx);Qy.push_front(sy);
while(!Qx.empty()) {
int hx=Qx.front(),hy=Qy.front();Qx.pop_front();Qy.pop_front();
for(rg int i=0;i<4;++i) {
int dx=hx+fx[i],dy=hy+fy[i];
if((dx > n) || (dy > m) || (!dx) || (!dy) || (mp[dx][dy] == '*') || (MU[dx][dy] <= MU[hx][hy]+fv[i])) continue;
MU[dx][dy]=MU[hx][hy]+fv[i];
if(i) {Qx.push_front(dx);Qy.push_front(dy);}
else {Qx.push_back(dx);Qy.push_back(dy);}
}
}
rg int _ans=0;
for(rg int i=1;i<=n;++i) {
for(rg int j=1;j<=m;++j) if(mp[i][j] != '*') {
if((MU[i][j] <= y) && ((MU[i][j]-j+sy) <= x)) ++_ans;
}
}
qw(_ans,'\n',true);
return 0;
}

Summary

当题设需要最小化多个变量时,不妨考虑变量间的相关关系,从此转化成单变量的极值问题。

当边权只有\(0\)和\(1\)的时候,可以考虑使用\(0/1bfs\),省去dij的log。

【极值问题】【CF1063B】 Labyrinth的更多相关文章

  1. cf1063B Labyrinth (bfs)

    可以证明,如果我搜索的话,一个点最多只有两个最优状态:向左剩余步数最大时和向右剩余步数最大时 然后判一判,bfs就好了 dfs会T惨... #include<bits/stdc++.h> ...

  2. CF1063B Labyrinth

    大家一起膜Rorshach. 一般的$bfs$会造成有一些点访问不到的情况,在$system\ test$的时候会$WA40$(比如我……). 发现这张地图其实是一个边权只有$0/1$的图,我们需要计 ...

  3. $CF1063B\ Labyrinth$ $01$最短路/$01BFS$

    \(Des\) 有一个网格图,上面的格子分为空地和障碍,障碍是不可以走的.现在从给定的起点出发开始到处乱走,最多可以往左走\(l\)次,往右走\(r\)次.求可能到达的点数. \(Sol\) 如果只限 ...

  4. 题解 CF1063B 【Labyrinth】

    题解 CF1063B [Labyrinth] 完了我发现我做CF的题大部分思路都和别人不一样qwq 这道题其实很水,不至于到紫题 我们只要bfs一下,向四个方向剪下枝,就A了(好像还跑的蛮快?) 是一 ...

  5. 2014百度之星资格赛 1004:Labyrinth(DP)

    Labyrinth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. ural 1145. Rope in the Labyrinth

    1145. Rope in the Labyrinth Time limit: 0.5 secondMemory limit: 64 MB A labyrinth with rectangular f ...

  7. [POJ1383]Labyrinth

    [POJ1383]Labyrinth 试题描述 The northern part of the Pyramid contains a very large and complicated labyr ...

  8. timus 1033 Labyrinth(BFS)

    Labyrinth Time limit: 1.0 secondMemory limit: 64 MB Administration of the labyrinth has decided to s ...

  9. poj 1383 Labyrinth

    题目连接 http://poj.org/problem?id=1383 Labyrinth Description The northern part of the Pyramid contains ...

随机推荐

  1. 在Android上运用Anko和Kotlin开发数据库:SQLite从来不是一件轻松的事(KAD25)

    作者:Antonio Leiva 时间:Mar 30, 2017 原文链接:https://antonioleiva.com/databases-anko-kotlin/ 事实告诉我们:在Androi ...

  2. DirectX11与DirectX12在古墓丽影暗影中的表现

    最近在关注这两个图形API,因为感兴趣,也算是初学者. 以下内容仅供参考. 使用古墓丽影暗影游戏,分别对这两个进行比较,得出的结论如下图(此笔记本散热很差,更改散热应该比下图结果好些): 首先看可以很 ...

  3. 初学Direct X (2)

    初学Direct X (2) 这一次要学习如何现实位图,尽管看过对双缓冲机制还有很多疑问,但是这并不阻碍我对他的入门了解 Direct3D提供了一个双重/后台缓冲区,在调用CreateDevice之时 ...

  4. SQL学习(时间,存储过程,触发器)

    SQL学习 几个操作时间的函数 --datapart 获取时间中的年月日时分秒等部分 select DATEPART(year,current_timestamp); select DATEPART( ...

  5. TW实习日记:第29-30天

    这两天挺忙,赶工期,改bug.项目现场的同事说客户火大得不行.可是谁叫你们谈工期谈的这么紧,完全不考虑开发的情况,真的是烦人这种事情.这两天遇到的最有难度的一个点就是附件预览,搞这个改到晚上11点. ...

  6. 孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1

    孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1 (完整学习过程屏幕记录视频地址在文末) 要模拟进行浏览器操作,只用requests是不行的,因此今天了解到有专门的解决方案 ...

  7. python内建模块Collections

    # -*- coding:utf-8 -*- # OrderedDict可以实现一个FIFO(先进先出)的dict, # 当容量超出限制时,先删除最早添加的Key: from collections ...

  8. HPUX 11.31 MC/SG恢复丢失的锁盘

    有时候由于一些特殊的原因,用户的cluster中的锁盘信息丢失,或者需要更换锁盘,只要执行一个命令就可以了. #cmdisklock reset /dev/vglock:/dev/disk/diskX ...

  9. Python3 小工具-TCP半连接扫描

    from scapy.all import * import optparse import threading def scan(ip,port): pkt=IP(dst=ip)/TCP(dport ...

  10. Java-编译后出现$1.class、$2.class等多个class文件

    部署代码的时候,由于自身技术不精和疏忽,导致查询数据没有正常显示, 排除法最后只能是放置部署文件时未包括多出来的$class文件.放上去之后果然好使了,才记录下这个问题... 这是因为在我们写的类中存 ...