HDU3652:B-number——题解
http://acm.hdu.edu.cn/showproblem.php?pid=3652
题目大意:给一个数n,求1~n所有满足下列条件的数的个数:
1.包含一个子串为“13”
2.能被13整除。
————————————————————
数位dp……然而不像各位大佬记忆化搜索的写法那样清真。
欢迎访问旁边友链的学姐来获取这个我抄的代码
设dp[i][j][k][0/1][0/1]表示第i位填j,现在该数被13除余数为k,无/有“13”,前i位小于等于/大于n的前i位。
然后推的方程……太长了,看代码吧。
虽然很长但是好理解不是吗……
#include<cstdio>
#include<cstring>
using namespace std;
int a[],b[],f[][][][][];
int dp(int x){
int len=;
while(x)a[++len]=x%,x/=;
if(len==)a[++len]=;
memset(f,,sizeof(f));
for(int i=;i<=;i++){
if(i<=a[])f[][i][i][][]=;
else f[][i][i][][]=;
}
for(int i=;i<=len;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
for(int l=;l<;l++){
bool t=;
if(j==&&k==)t=;
if(j<a[i])
if(t)
f[i][j][(l+j*b[i-])%][t][]+=f[i-][k][l][][]+f[i-][k][l][][]
+f[i-][k][l][][]+f[i-][k][l][][];
else{
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][]+f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][]+f[i-][k][l][][];
}
else if(j==a[i])
if(t){
f[i][j][(l+j*b[i-])%][t][]+=f[i-][k][l][][]+f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][t][]+=f[i-][k][l][][]+f[i-][k][l][][];
}
else{
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][];
}
else
if(t)
f[i][j][(l+j*b[i-])%][t][]+=f[i-][k][l][][]+f[i-][k][l][][]
+f[i-][k][l][][]+f[i-][k][l][][];
else{
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][]+f[i-][k][l][][];
f[i][j][(l+j*b[i-])%][][]+=f[i-][k][l][][]+f[i-][k][l][][];
}
}
}
}
}
int ans=;
for(int i=;i<=a[len];i++)ans+=f[len][i][][][];
for(int i=len-;i;i--){
for(int j=;j<=;j++){
ans+=f[i][j][][][]+f[i][j][][][];
}
}
return ans;
}
int main(){
b[]=;
for(int i=;i<=;i++)b[i]=b[i-]*%;
int n;
while(scanf("%d",&n)!=EOF&&n){
printf("%d\n",dp(n));
}
return ;
}
HDU3652:B-number——题解的更多相关文章
- C#版 - Leetcode 414. Third Maximum Number题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
- Problem 2. number题解
number:数学+二分图匹配 首先,如果S<N,那么S+1,S+2...N这些数直接放在S+1,S+2...N的位置上(如果其他数x放在这些位置上面,这些数不放在对应位置,那么x一定能放在这些 ...
- [LeetCode]Letter Combinations of a Phone Number题解
Letter Combinations of a Phone Number: Given a digit string, return all possible letter combinations ...
- CF1157B-Long Number题解
原题地址 题目大意:有一个\(n\)位数,其中的数字只有\(1\)~\(9\),不包括\(0\),每个\(1\)~\(9\)的数字有一个映射,映射也在\(1\)~\(9\)中,现在我们可以对这个\(n ...
- POJ2104:K-th Number——题解
http://poj.org/problem?id=2104 题目大意:求区间第k小. —————————————————————————— 主席树板子题. ……我看了半天现在还是一知半解的状态所以应 ...
- 2017 ACM/ICPC Asia Regional Shenyang Online E number number number 题解
分析: 当n=1时ans=4=f(5)-1; n=2,ans=12=f(7)-1; n=3,ans=33=f(9)-1; 于是大胆猜想ans=f(2*k+3)-1. 之后用矩阵快速幂求解f(n)即可, ...
- HDU3709 Balanced Number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意: 求区间 \([x, y]\) 范围内"平衡数"的数量. 所谓平衡 ...
- HDU5179 beautiful number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5179 题目大意: 给你一个数 \(A = a_1a_2 \cdots a_n\) ,我们称 \(A\) ...
- CF919B Perfect Number 题解
Content 给定一个数字 \(k\),求出第 \(k\) 小的各数位和为 \(10\) 的数. 数据范围:\(1\leqslant k\leqslant 10000\). Solution 这题为 ...
随机推荐
- windown reids
记录Windown安装Redis和php_redis扩展 和Linux系统不同windown中不需要编译安装:只需要下对版本拖拽过去即可: 首先安装redis服务: 可以百度下一个,只要注意系统版本即 ...
- Weka java.lang.reflect.InvocationTargetException
在用Weka导入数据的时候报 java.lang.reflect.InvocationTargetException 错误,Weka运行包没有给出详细的错误信息,无法查到. 直接调试Weka源码,发现 ...
- Windows系统常用修复命令 无须重装系统
1.0 netsh int ipv4 reset 2.0 netsh winsock reset winsock是Windows网络编程接口,winsock工作在应用层,它提供与底层传输协议无关的高层 ...
- katalon系列六:Katalon Studio Web UI关键字讲解
在一个Test Case里,点左上Add-Web UI Keyword,可以添加一行新的命令. 像Click.setText.Delay这些最基本的,大家还是看看官方的API文档吧,望文知义,如果是纯 ...
- docker官网安装
最近发现一些同学居然不会安装docker,难,不难,只是“网络不好”! 如果是学习的话,目前我发现的比较好的方法还是到清华的开源镜像网站: https://mirror.tuna.tsinghua.e ...
- Selenium 入门到精通系列:六
Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...
- Python 多线程、进程、协程上手体验
浅谈 Python 多线程.进程.协程上手体验 前言:浅谈 Python 很多人都认为 Python 的多线程是垃圾(GIL 说这锅甩不掉啊~):本章节主要给你体验下 Python 的两个库 Thre ...
- react项目总结
1.基本框架 1.react+react-router4+redux3.7.2 2.css预编译使用sass 3.数据请求使用axios(原本是使用fetch,结果在ios10下报错) 4.ui组件库 ...
- Spring Cloud(九):配置中心(消息总线)【Finchley 版】
Spring Cloud(九):配置中心(消息总线)[Finchley 版] 发表于 2018-04-19 | 更新于 2018-05-07 | 我们在 Spring Cloud(七):配置中心 ...
- leetcode9_C++判断一个整数是否是回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 输出: true 示例 2: 输入: - 输出: false 解释: 从左向右读, 为 - ...