#莫队,bitset#洛谷 3674 小清新人渣的本愿
分析
只要做到\(O(n\sqrt{n})\)的时间复杂度就可以了
考虑莫队,首先乘号就是枚举\(x\)的约数\(d\),
判断\(d\)和\(\frac{x}{d}\)是否同时出现,
再考虑差,怎样优化暴力,考虑bitset,将其左移\(x\)位,
再与原bitset按位与,若有公共的1即为是
那和怎么办,\(a+b=x\)那不就是\(a-(-b)=x\)吗,把\(-b\)扔进bitset就可以了
由于bitset里不能放负数所以要下标整体左移\(n\)位
代码
#include <cstdio>
#include <cctype>
#include <bitset>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; bitset<N>uk,ku;
struct five{int opt,l,r,x,rk;}q[N];
int kuai[N],Sqrt[N],a[N],ans[N],n,Q,CNT[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
bool cmp(five a,five b){
if (kuai[a.l]^kuai[b.l]) return a.l<b.l;
if (kuai[a.r]^kuai[b.r]) return kuai[a.l]&1?a.r<b.r:a.r>b.r;
return (kuai[a.l]^kuai[a.r])&1?a.x<b.x:a.x>b.x;
}
inline void add(int now){if (++CNT[now]==1) uk[now]=ku[n-now]=1;}
inline void del(int now){if (--CNT[now]==0) uk[now]=ku[n-now]=0;}
signed main(){
n=iut(); Q=iut();
for (rr int i=1;i<317;++i) Sqrt[i*i]=i;
for (rr int i=1;i<N;++i) if (!Sqrt[i]) Sqrt[i]=Sqrt[i-1];
for (rr int i=1;i<=n;++i) a[i]=iut(),kuai[i]=(i-1)/Sqrt[(n+Q)>>1]+1;
for (rr int i=1;i<=Q;++i) q[i]=(five){iut(),iut(),iut(),iut(),i};
sort(q+1,q+1+Q,cmp);
for (rr int i=1,L=q[1].l,R=L-1;i<=Q;++i){
while (L>q[i].l) add(a[--L]);
while (L<q[i].l) del(a[L++]);
while (R>q[i].r) del(a[R--]);
while (R<q[i].r) add(a[++R]);
switch (q[i].opt){
case 1:ans[q[i].rk]=(uk&(uk<<q[i].x)).any(); break;
case 2:ans[q[i].rk]=(uk&(ku>>(n-q[i].x))).any(); break;
case 3:{
for (rr int j=1;j<=Sqrt[q[i].x];++j)
if (q[i].x%j==0&&uk[j]&&uk[q[i].x/j]){
ans[q[i].rk]=1; break;
}
break;
}
}
}
for (rr int i=1;i<=Q;++i)
if (ans[i]) printf("hana\n");
else printf("bi\n");
return 0;
}
#莫队,bitset#洛谷 3674 小清新人渣的本愿的更多相关文章
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- 洛谷P3674 小清新人渣的本愿(莫队)
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
- 洛谷 P3674 小清新人渣的本愿
想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...
- [Luogu 3674]小清新人渣的本愿
Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- P3674 小清新人渣的本愿 莫队+bitset
ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...
- 【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)
题目链接 因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护. \(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了 ...
随机推荐
- maven引入本地jar不能打入部署包的问题解决
引入的三方依赖 jar 包, scope 为 system 的包 maven 默认是不打包进去的,需要加这个配置 在pom.xml文件中找到spring-boot-maven-plugin插件,添加如 ...
- 用 nebula_dart_gdbc 在移动设备玩图数据库,泰酷辣!
nebula_dart_gdbc,是访问 NebulaGraph 的 Dart 语言客户端,在 dart_gdbc 的规范下进行开发. dart_gdbc 是一套使用 Dart 语言定义的图数据库标准 ...
- 为什么HashMap的键值可以为null,而ConcurrentHashMap不行?
写在开头 昨天在写<HashMap很美好,但线程不安全怎么办?ConcurrentHashMap告诉你答案!>这篇文章的时候,漏了一个知识点,知道晚上吃饭的时候才凸显想到,关于Concur ...
- [C++/QT] 获取进程完整路径
气哭我了,我不就获取一下进程路径嘛,,,绕了好大一圈 主要是用到了GetModuleFileNameEx() 函数 食用方式如下 HANDLE hProcess = OpenProcess(PROCE ...
- 50条MAUI踩坑记
1. 目录结构: (1)_imports.razor是一个全局using namespace的地方 (2)Platforms下的代码,虽然都放在同一个项目下,但是Platforms\Android下的 ...
- Android switch语句报错Constant expression required
方案一 :可以用 if来替代 如下 原因:在Android Studio中使用JDK17以上版本,会出现switch语句报错"Constant expression required&qu ...
- 19 SWERC 2022-2023 - Online Mirror (Unrated, ICPC Rules, Teams Preferred)L. Controllers(数学公式+瞎搞)
L. Controllers 思路: #include <bits/stdc++.h> #define int long long #define rep(i, a, b) for(int ...
- APP限制录屏怎么办?如何绕过APP录屏限制和截图限制-支持安卓和IOS
简要:互联网越来越发达,衍生了很多形形色色的app,商家为了防止app资源被传播,因此在用户截取屏幕操作或者录屏操作时会警告用户并前会禁止用户的这一操作行为. 那么有没有办法解决呢?有人说可以用投屏. ...
- XAF Blazor TabbedMdi
开源项目地址:https://gitee.com/easyxaf/blazor-tabbed-mdi 前言 XAF在WinForm中采用了多文档界面(MDI),但在Blazor中却没有,在官网中也有人 ...
- Django 初步使用
Django 框架系列 目录 Django 框架系列 一. 安装启用 1.1 主流web框架概述 1.2 安装版本 1.3 启动的两种方式 1)命令行创建 2)pycharm创建 3)两种方式的区别 ...