原作者为 RioTian@cnblogs, 本作品采用 CC 4.0 BY 进行许可,转载请注明出处。

最近写学习了一下网络爬虫,但昨天晚上的CF让人感觉实力明显退步,又滚回来刷题了QAQ...

比赛链接:Here

1389A. LCM Problem

给定区间 \([l,r]\),求两个不同的数字 \(x,y\) ,使得\(l≤x<y≤r,l≤LCM(x,y)≤r\) 。

思路

这道题和之前的一道求区间最大 \(\gcd\)​​ 的签到很像,感兴趣的可以去看看 CF1370A. Maximum GCD

在这个题目中的条件可以整合为 \(l\le x < y \le lcm\le r\),所以我们只需要让 \(lcm\) 最小即可 。

\(x\) 和 \(y\) 的最小公倍数最小为 \(lcm_{min}(x,y) = y = 2x\) ,此时令 \(x=l\) ,可以得到 \(lcm_{min}=y=2l\) ,即为最小的答案。如果 \(2l>r\), 无解。

int main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
int _; for (cin >> _; _--;) {
ll l, r; cin >> l >> r;
if (2 * l > r) cout << "-1 -1\n";
else cout << l << " " << 2 * l << "\n";
}
}

1389B. Array Walk

给定数组 \(a_1,a_2,a_3,...,a_n\),起点为 \(a_1\) ,你可以向左向右移动,不能越界,最多 \(k\) 次。

并且限制不能连续的向左移动,且向左移动的次数最多为 \(z\) 。

每次移动到位置 \(i\) 可以获取分数 \(a_i\) ,初始分数为 \(a_1\) ,询问你可以得到的最大分数和。

思路:

最开始在写的时候挺懵逼的,但考虑差分之后感觉可以就往下推了,正好这个思路是正解?

首先,向左移动不能连续,所以如果有向左移动,就只能以左右间隔的形式反复横跳。其次,以贪心的思想,最大和出现的情况,一定是只在某两个相邻位置之间反复横跳。

我们将移动分为三个阶段:

  • 第一阶段,假设初始向右移动了 \(i\) 步,那么当前处于的位置为 \(a_{i+1}\) ,积分和为 \(s1= sum_{i+1}\) (设 \(sum_i = \sum_{k=1}^ia_k\),即前 \(i\) 项和)
  • 第二阶段,随后在 \(a_i\)​ 与 \(a_{i +1}\)​之间反复横跳,设此过程中向左次数最多为 \(p\)​ 次,向右次数最多为 \(q\)​​ ,则 \(p=\min \left(z,\left\lceil\frac{k-i}{2}\right\rceil\right), q=\min (p, k-i-p),\) 得到的积分为 \(s_{2}=p * a_{i}+q * a_{i+1}\)​​
  • 第三阶段,设剩余的步数为 \(k_1 = k - i - p - q\)

    • 如果 \(k_1 > 0\) ,全部用于向右移动,可以得到的积分为 $s_{3}=s u m_{k_{1}+i+1}-s u m_{i+1} $ (如果有剩余步,那 么第二阶段结束后位置一定在 \(i+1\)​) 。
    • 如果 $k_{1}=0 $, 则 $s_{3}=0 $, 且同时 $ i+1=k-p-q+1$ ,即 $s u m_{i+1}=s u m_{k-p-q+1} $, 无论阶段二的落点是在 \(i\) 还是 $i+1 $ 。

三个阶段的总积分获取为:\(r e s=s_{1}+s_{2}+s_{3}=s u m_{k-p-q+1}+p * a_{i}+q * a_{i+1}\)

则最大积分和 \({ ans }=\max \left\{\mathrm{res}_{i} \mid r e s_{i}=\operatorname{sum}_{k-p-q+1}+p * a_{i}+q * a_{i+1}, i \in[1, k]\right\}\)​ ,

复杂度为:\(\mathcal{O}(k)\)

const int N = 1e5 + 10;
ll a[N], s[N];
int main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
int _; for (cin >> _; _--;) {
ll n, k, z;
cin >> n >> k >> z;
for (int i = 1; i <= n; ++i) cin >> a[i];
ll ans = 0;
s[0] = 0;
for (int i = 1; i <= n; ++i) s[i] = s[i - 1] + a[i];
for (int i = 1; i < k + 1; i += 1) {
ll p = min(1ll * z, (k + 1 - i) / 2);
ll q = min(1ll * p, k - i - p);
ll res = s[k - p - q + 1] + p * a[i] + q * a[i + 1];
ans = max(ans, res);
}
cout << ans << "\n";
}
}

1389C. Good String

规定字符串 \(t_1,t_2,t_3,...,t_n\)

如果 \(t_n,t_1,t_2,...t_{n−3},t_{n−2},t_{n−1},t_n\)​与 \(t_2,t_3,t_4,...t_{n−1},t_n\)​ 完全相同,则称该字符串为 Good String

判断给定字符串至少删除多少个字符可以变成 Good String 。

思路:

简单推导可以得到 Good String 中:

  • 如果 \(n\) 是偶数,\(t_1 = t_3 = t_5 =...=t_{n-3} = t_{n-1}\) 且 \(t_2 = t_4 =...=t_{n-2} = t_n\)

    如 \(25252525\)

  • 如果 \(n\) 为奇数,\(t_1 = t_2 = ...=t_n\) ,如 \(2222\)

而且题目规定 \(t_i \in [0,9]\) ,我们通过可以构造 \(10\times 10\) 种情况,分别算转化需要的最小花费。

复杂度为:\(\mathcal{O}(10^2n)\)​

int main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
int _; for (cin >> _; _--;) {
string s; cin >> s;
int a[2] = {};
int ans = INT_MAX;
for (int i = 0; i < 10; ++i)
for (int j = 0; j < 10; ++j) {
a[0] = i, a[1] = j;
int ct = 0, k = 0;
for (int i = 0; i < s.size(); ++i) {
if (s[i] != a[k & 1] + '0') ct++;
else k = !k;
}
if (int(s.size() - ct) & 1) if (i != j) ct++; //只有全相等才能为奇数
ans = min(ans, ct);
}
cout << ans << "\n";
}
}

1389D. Segment Intersections

待补

Educational Codeforces Round 92 (Rated for Div. 2) A~C的更多相关文章

  1. Educational Codeforces Round 92 (Rated for Div. 2) B、C题解

    TAT 第一场codeforces B. Array Walk #暴力 #贪心 题目链接 题意 有\(a1, a2, ..., an\) 个格子(每个格子有各自分数),最初为1号格(初始分数为\(a1 ...

  2. Educational Codeforces Round 92 (Rated for Div. 2)

    A.LCM Problem 题意:最小公倍数LCM(x,y),处于[l,r]之间,并且x,y也处于[l,r]之间,给出l,r找出x,y; 思路:里面最小的最小公倍数就是基于l左端点的,而那个最小公倍数 ...

  3. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  5. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  6. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  7. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  8. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  9. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  10. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

随机推荐

  1. Android 输入系统介绍

    目录 一.目的 二.环境 三.相关概念 3.1 输入设备 3.2 UEVENT机制 3.3 JNI 3.4 EPOLL机制 3.5 INotify 四.详细设计 4.1 结构图 4.2 代码结构 4. ...

  2. Sealos 云操作系统私有化部署教程

    Sealos 私有云已经正式发布了,它为企业用云提供了一种革命性的新方案.Sealos 的核心优势在于,它允许企业在自己的机房中一键构建一个功能与 Sealos 公有云完全相同的私有云.这意味着企业可 ...

  3. 【python】大作业进度一 | 解析题目

    1.爬取生成txt文件(整本小说) 2.图形化界面的实现

  4. iframe嵌入报表滚动条问题

    当在iframe中嵌入报表时,可能会遇到滚动条的问题.下面是一个详细的介绍 1. 了解iframe: - iframe是HTML中的元素,用于在当前页面中嵌入另一个页面. - 嵌入报表时常使用ifra ...

  5. windows下tomcat开机自启动

    在Windows下,可以通过以下步骤将Tomcat设置为开机自启动: 1. 打开Tomcat安装目录:通常情况下,Tomcat的安装目录位于`C:\Program Files\Apache Softw ...

  6. 机器学习-ROC曲线:技术解析与实战应用

    本文全面探讨了ROC曲线(Receiver Operating Characteristic Curve)的重要性和应用,从其历史背景.数学基础到Python实现以及关键评价指标.文章旨在提供一个深刻 ...

  7. RocksDB 在 vivo 消息推送系统中的实践

    作者:vivo 互联网服务器团队 - Zeng Luobin 本文主要介绍了 RocksDB 的基础原理,并阐述了 RocksDB 在vivo消息推送系统中的一些实践,通过分享一些对 RocksDB ...

  8. 精致的Javascript代码

    1. 统计一个数组中,每个值的个数 var cards = [1, 2, 3, 4, 3, 2, 1, 4, 5] var dict = {}; for(var i = 0; i < cards ...

  9. 从零开始封装 vue 组件

    对于学习 Vue 的同学来说,封装 vue 组件是实现代码复用的重要一环.在 Vue 官网中非常详细地介绍了 vue 组件的相关知识,我这里简单摘取使用最频繁的几个知识点,带大家快速入门 vue 组件 ...

  10. 切换容器引擎为containerd

    确保模块载入: # 永久生效 cat <<EOF | sudo tee /etc/modules-load.d/containerd.conf overlay br_netfilter E ...