题目链接

观察题目,我们发现直接计算是困难的,先构造单个合法的 \(T\) 分析其性质。

为了构造出 \(T\),先考虑构造时 \(T\) 时什么时候会出现不合法的情况,此时 \(T\) 会有一段和 \(S\) 相同的前缀,且这段前缀后面跟着的字符比 \(S\) 所跟的小。

为了避免这种情况出现,我们需要在每次添加字符时进行检查,具体而言,我们需要保证当前字符串的任意一个为 \(S\) 前缀的后缀在 \(S\) 中的下一个字符小于等于当前的字符。

这个约束条件显然与 KMP 有点关联,我们边加字符边维护当前字符串的一个最长的为 \(S\) 前缀的后缀,相当于建出 \(S\) 的 KMP 自动机,维护当前所在节点,每次直接跳向上的转移边查找约束后即可合法构造。

接下来考虑 \(T\) 开始循环后在自动机上会怎样转移,考察在输入无穷次 \(T\) 后走到的一个节点,由于 KMP 自动机的节点主要代表当前字符串与 \(S\) 的一个前缀相同的最大后缀的长度,且输入的长度无穷大,因此如果我们再输入一次 \(T\),此串与 \(S\) 的一个前缀相同的最大后缀的长度不改变,即还会回到原本的节点,故此过程构成了一个环,直接硬 dp \(m\) 次找环的个数可以做到 \(O(n^2m)\)。

如何优化呢?考察我们 dp 找环时每次转移往待定 \(T\) 的末尾添加字符,先找到我能放置的最小的字符,即待定 \(T\) 与 \(S\) 的一个前缀相同的所有后缀中下一个字符最大的那个,如果更小就不合法,要么添加此字符要么再添加更大的。

如果添加此字符,则继续往下转移,否则因为 \(S\) 中没有对应的前缀,我们会回到根节点。

故此过程对于以每个节点为起点的环,不过根节点的环最多只有一个(沿唯一的路径一直走,因此我们可以暴力判断存不存在此环,并枚举走到根节点的最小时间,在此时间之前我们沿着既定路线走,之后跳到根节点再走回来,走回来的方案数可以 dp 预处理,设 \(f_{i,j}\) 表示到达第 \(i\) 个节点走了 \(j\) 步的方案数,转移是容易的。

两个部分综合起来时间复杂度 \(O(nm)\)。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 3005
#define mod 998244353
#define ll long long
using namespace std;
char s[N];
ll nex[N],maxpos[N],ch[N][27],f[N][N];
int main(){
ll m;cin>>m;cin>>(s+1);ll n=strlen(s+1);
ll sum=1;
for(ll i=1;i<=m;i++)sum=(sum*26)%mod;
for(ll i=2,j=0;i<=n;i++){
while(j && s[i]!=s[j+1])j=nex[j];
if(s[i]==s[j+1])j++;
nex[i]=j;
}
for(ll i=0;i<=n;i++){
for(ll j=1;j<=26;j++){
if(s[i+1]-'a'+1==j)ch[i][j]=i+1;
else ch[i][j]=ch[nex[i]][j];
if(ch[i][j])maxpos[i]=j;
}
}
f[0][0]=1;
for(ll j=0;j<=m;j++){
for(ll i=0;i<=n;i++){
for(ll k=maxpos[i];k<=26;k++)f[ch[i][k]][j+1]=(f[ch[i][k]][j+1]+f[i][j])%mod;
}
}
ll ans=0;
for(ll i=0;i<=n;i++){
ll now=i;
for(ll j=1;j<=m;j++){
ans=(ans*1ll+(26-maxpos[now])*1ll*f[i][m-j])%mod;
now=ch[now][maxpos[now]];
if(!now)break;
}
if(now==i)ans=(ans+1)%mod;
}
cout<<(((sum-ans)%mod)+mod)%mod;
}

P5404 [CTS2019] 重复 题解的更多相关文章

  1. LOJ3123 CTS2019 重复 KMP自动机、DP、多项式求逆

    传送门 CTS的计数题更完辣(撒花 Orz zx2003,下面的内容在上面的博客基础上进行一定的补充. 考虑计算无限循环之后不存在子串比\(s\)字典序小的串的个数.先对串\(s\)建立KMP自动机, ...

  2. UVALive 5881 Unique Encryption Keys (DP)

    Unique Encryption Keys 题目链接: http://acm.hust.edu.cn/vjudge/problem/26633 Description http://7xjob4.c ...

  3. AC自动机模板2(【CJOJ1435】)

    题面 Description 对,这就是裸的AC自动机. 要求:在规定时间内统计出模版字符串在文本中出现的次数. Input 第一行:模版字符串的个数N. 第2->N+1行:N个字符串.(每个模 ...

  4. hdu1686字符串kmp

    The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e ...

  5. 10.15 lzxkj

    几天前写的,忘了放了,在此填坑 10月16的题我出的不写题解了 lzxkj 题目背景 众所不周知的是, 酒店之王 xkj 一个经常迷失自我的人 有一天, 当起床铃再一次打响的时候, TA 用 O(1) ...

  6. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  7. 【题解】CTS2019珍珠(二项式反演+卷积)

    [题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...

  8. 最长重复字符串题解 golang

    最长重复字符串题解 package main import ( "fmt" "strings" ) type Index map[int]int type Co ...

  9. 【LeetCode题解】3_无重复字符的最长子串(Longest-Substring-Without-Repeating-Characters)

    目录 描述 解法一:暴力枚举法(Time Limit Exceeded) 思路 Java 实现 Python 实现 复杂度分析 解法二:滑动窗口(双指针) 思路 Java 实现 Python 实现 复 ...

  10. 力扣(LeetCode)删除排序链表中的重复元素II 个人题解

    给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字. 思路和上一题类似(参考 力扣(LeetCode)删除排序链表中的重复元素 个人题解)) 只不过这里需要用到一个前 ...

随机推荐

  1. 【渗透测试】利用Cobalt Strike渗透Windows

    目标 在kali中使用Cobalt Strike对Windows进行渗透 机器环境 kali(服务端):192.168.175.129 win11(攻击机):192.168.175.128 win11 ...

  2. kali下对压缩包的压缩与解压(转)

    kali linux 压缩文件解压缩命令(包含7z) tar tar 解包:tar xvf FileName.tar 打包:tar cvf FileName.tar DirName (注:tar是打包 ...

  3. 你的Spring应用启动很慢?不妨试试这个工具!

    睡不着闲逛,在GitHub上看到一个挺实用的开源项目:Spring Startup Analyzer. 从项目名称中就大概能猜到,这是一个分析Spring应用启动过程的工具.Spring Startu ...

  4. Error: Could not open client transport with JDBC Uri: jdbc:hive2://localhost:10000: java.net.ConnectException: 拒绝连接 (Connection refused) (state=08S01,code=0)

    一:启动hiveserver2服务 二:启动beeline 三:连接hiveserver2(下面的1000000端口号适当改小写因为其超出最大端口号的范围建议改为10000) 如果启动不成功实现我们先 ...

  5. ESP32连接云服务器【WebSocket】

    ESP32连接云服务器[ESP32+宝塔面板] 相关文章 ESP32连接MQ Sensor实现气味反应 https://blog.csdn.net/ws15168689087/article/deta ...

  6. 超详细的webpack之开始体验吧

    webpack是一个前端工程化非常重要静态模块化打包工具,可以帮我们把 less.sass.esmodule.commonjs 等模块依赖处理成浏览器可识别的静态资源. 虽然webpack非常好用,但 ...

  7. Linux 之 shell 编程

    Linux 之 shell 编程学习笔记(并不完全正确,有误请指正) 概念性知识点 脚本概念 脚本(Script),是使用一种特定的描述性语言,依据一定的格式编写的 可执行文件 运行脚本要求 脚本须有 ...

  8. 监控keepalived_vip控制容器的状态

    需求:监控server服务器的vip状态,如果vip存在,则判断容器是否启动,如果没有启动,则启动容器.如果vip不存在则关闭容器. 方法一: 查看代码 #!/bin/bash ip add | gr ...

  9. 领域驱动设计(DDD):从基础代码探讨高内聚低耦合的演进

    大家好,我是付威,一名已在编码第一线奋斗了十余年的程序员.在2019年我初次接触到领域驱动设计(Domain-Driven Design,简称DDD)的概念.在我的探索中,我发现许多有关DDD的教程过 ...

  10. TOML格式简介

    TOML(Tom's Obvious, Minimal Language)是一种用于配置文件的轻量级文本格式,旨在易于阅读和编写.它的设计目标是简单明了,同时也能表达复杂的数据结构.TOML文件通常用 ...