聊聊分布式 SQL 数据库Doris(七)
LSM-Tree
Doris的存储结构是类似LSM-Tree设计的,因此很多方面都是通用的,先阅读了解LSM相关的知识,再看Doris的底层存储与读取流程会清晰透彻很多,如下是几个关键的设计:
SSTable: Sorted Strings Table; 一般由一组数据block和一组元数据block组成,数据是已序的。元数据会存储数据block的描述信息,如索引、BloomFilter、压缩、统计等信息。
MemTable: 内存里的表,有序且存储在Buffer中;可以用多种数据结构来组织,一般是用跳表(SkipList),也可以是有序数组或红黑树等二叉搜索树;最后会被转化成SSTable格式刷入磁盘持久化存储。
Compaction: 合并压缩SSTable。
参考:
索引
官网文档: 索引概述.
Doris内建的索引: 前缀索引(Short key Index)、ZoneMap索引,默认是根据建表时的key列生成的。
Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。
在 Aggregate、Unique 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQUE KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。因此在此排序列的基础上根据不同的场景构建内置的索引,提高查询的性能与效率。
Duplicate、Aggregate、Unique 模型,都会在建表指定 key 列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列, 可以认为只是 “排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key 列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。
Join
官网文档: Doris Join 优化原理
概览
Doris 支持两种物理算子,一类是 Hash Join,另一类是 Nest Loop Join。
Doris 支持 4 种数据 Shuffle 方式:
BroadCast Join: 要求把右表全量的数据都发送到左表上,即每一个参与 Join 的节点,它都拥有右表全量的数据
Shuffle Join: 只支持hash join场景(即等值匹配). 当进行 Hash Join 时候,可以通过 Join 列计算对应的 Hash 值,并进行 Hash 分桶,并将分桶后的数据分散到节点中进行计算
Bucket Shuffle Join: 右表数据扫描出来之后进行数据分区的 Hash 计算,根据左表本身的数据分布发送到右表对应的 Join 计算节点上。
Colocation: 导入数据时,提前将join表的数据分散到一个节点
Runtime Filter
Doris 在进行 Hash Join 计算时会在右表构建一个哈希表,左表流式的通过右表的哈希表从而得出 Join 结果。而 RuntimeFilter 就是充分利用了右表的 Hash 表,在右表生成哈希表的时候,同时生成一个基于哈希表数据的一个过滤条件(Filter),然后下推到左表的数据扫描节点,通过这样的方式,左表在运行时(Runtime)提前进行数据过滤,提高查询效率。
Runtime Filter是分布式SQL查询引擎框架通用的一种优化手段,具体可参考: Join优化技术之Runtime Filter.
Runtime Filter涉及到的下推技术同样也是查询引擎框架常用的优化手段; 常见的下推优化技术有:谓词下推, 存储层下推等。
Doris支持的三种类型RuntimeFilter:
- IN 的优点是过滤效果明显,且快速。它的缺点首先第一个它只适用于 BroadCast,第二,它右表超过一定数据量的时候就失效了,当前 Doris 目前配置的是1024,即右表如果大于 1024,IN 的 Runtime Filter 就直接失效了,其余的RuntimeFileter则没有限制。
- MinMax 的优点是开销比较小。它的缺点就是对数值列还有比较好的效果,但对于非数值列,基本上就没什么效果。
- Bloom Filter 的特点就是通用,适用于各种类型、效果也比较好。缺点就是它的配置比较复杂并且计算较高。
使用场景的要求:
- 第一个要求就是左表大右表小,因为构建 Runtime Filter是需要承担计算成本的,包括一些内存的开销。
- 第二个要求就是左右表 Join 出来的结果很少,说明这个 Join 可以过滤掉左表的绝大部分数据。
Join Reorder
Join Reorder 是指在执行SQL查询时,决定多个表进行 join 的顺序。它是数据库查询优化的一个重要方面,对查询性能和效率有着重要的影响, 不同的 join order 对性能可能有数量级的影响。
从定义来看,其实就是寻找最短路径(最优解)的过程,因此可以从算法的角度考虑,比如动态规划算法与贪心算法;同时也可以基于规则来做。
Doris中Join Reorder的实现是基于规则策略的,其规则定义如下:
- 让大表、跟小表尽量做 Join,它生成的中间结果是尽可能小的。
- 把有条件的 Join 表往前放,也就是说尽量让有条件的 Join 表进行过滤
- Hash Join 的优先级高于 Nest Loop Join,因为 Hash join 本身是比 Nest Loop Join 快很多的。
Join Reorder 也是SQL查询引擎框架通用的一种优化手段, 在PolarDB、TiDB、StarRocks等数据库框架中都有涉及与应用。其实现与说明如下:
聊聊分布式 SQL 数据库Doris(七)的更多相关文章
- 分布式SQL数据库中部分索引的好处
在优锐课的java学习分享中,探讨了分布式SQL数据库中部分索引的优势,并探讨了性能测试,结果等. 如果使用局部索引而不是常规索引,则在可为空的列上(其中只有一小部分行的该列不具有空值),然后可以大大 ...
- 保姆级教程!手把手教你使用Longhorn管理云原生分布式SQL数据库!
作者简介 Jimmy Guerrero,在开发者关系团队和开源社区拥有20多年的经验.他目前领导YugabyteDB的社区和市场团队. 本文来自Rancher Labs Longhorn是Kubern ...
- CockroachDB学习笔记——[译]The New Stack:遇见CockroachDB,一个弹性SQL数据库
原文链接:https://www.cockroachlabs.com/blog/the-new-stack-meet-cockroachdb-the-resilient-sql-database/ 原 ...
- 【原创】分布式之数据库和缓存双写一致性方案解析(三) 前端面试送命题(二)-callback,promise,generator,async-await JS的进阶技巧 前端面试送命题(一)-JS三座大山 Nodejs的运行原理-科普篇 优化设计提高sql类数据库的性能 简单理解token机制
[原创]分布式之数据库和缓存双写一致性方案解析(三) 正文 博主本来觉得,<分布式之数据库和缓存双写一致性方案解析>,一文已经十分清晰.然而这一两天,有人在微信上私聊我,觉得应该要采用 ...
- Spring Cloud Config(一):聊聊分布式配置中心 Spring Cloud Config
目录 Spring Cloud Config(一):聊聊分布式配置中心 Spring Cloud Config Spring Cloud Config(二):基于Git搭建配置中心 Spring Cl ...
- KTV项目 SQL数据库的应用 结合C#应用窗体
五道口北大青鸟校区 KTV项目 指导老师:袁玉明 歌曲播放原理 SQL数据库关系图 C#解决方案类图 第一步:创建数据库连接方法和打开方法和关闭方法! public class DBHelper { ...
- Google的分布式关系型数据库F1和Spanner
F1是Google开发的分布式关系型数据库,主要服务于Google的广告系统.Google的广告系统以前使用MySQL,广告系统的用户经常需要使用复杂的query和join操作,这就需要设计shard ...
- Azure SQL 数据库:新服务级别问答
ShawnBice 2014 年 5 月 1 日上午 11:10 本月初,我们庆祝了SQL Server 2014 的推出,并宣布正式发布分析平台系统,同时分享了智能系统服务预览版.Quentin ...
- 使用SQL Server 2008远程链接时SQL数据库不成功的解决方法
关键设置: 第一步(SQL2005.SQL2008): 开始-->程序-->Microsoft SQL Server 2008(或2005)-->配置工具-->SQL Serv ...
- Windows下Postgre SQL数据库通过Slony-I 实现数据库双机同步备份
一. 我们要实现的环境是windows xp.windows2003上安装Postgre SQL数据库,实现目的是两台数据库服务器进行数据库同步,即数据库同步更新.删除.插入等对数据库的操作. 二. ...
随机推荐
- asp.net core之异常处理
在开发过程中,处理错误是一个重要的方面.ASP.NET Core提供了多种方式来处理错误,以确保应用程序的稳定性和可靠性. TryCatch TryCatch是最常见也是最基础的一种异常处理方式,只需 ...
- 基于Go编写一个可视化Navicat本地密码解析器
前提 开发小组在测试环境基于docker构建和迁移一个MySQL8.x实例,过程中大意没有记录对应的用户密码,然后发现某开发同事本地Navicat记录了根用户,于是搜索是否能够反解析Navicat中的 ...
- cesium加载gif图片(cesium篇.43)
https://blog.csdn.net/QQ98281642/article/details/120214325
- [信息安全] 加密算法:md5摘要算法 / sha256算法
1 MD5 1.1 算法定义 MD5的全称为 Message-Digest Algorithm,是一种被广泛使用的单向散列函数.属于Hash算法中一种比较重要算法--具有单项加密.加密结果唯一.安全性 ...
- QTreeView自绘实现酷炫样式
本篇文章结合笔者的经历,介绍一种通过重写QTreeView绘制事件,使用QPainter来实现好看的列表的方式. 导语 Hi,各位读者朋友,大家好.相信大家在日常的工作中,经常会接触到QTreeVie ...
- c++算法之动态规划:01背包
什么是动态规划? 动态规划算法(dynamic programing),是一种由递推为基础的比贪心更稳定的一种优化策略,为运筹学的一部分.就是通过以递推为基础的手段非暴力求出最值. 它的总体思想其实就 ...
- 纯干货!一文get昇腾Ascend C编程入门全部知识点
本文分享自华为云社区<昇腾Ascend C编程入门教程>,作者:昇腾CANN . 2023年5月6日,在昇腾AI开发者峰会上,华为正式发布了面向算子开发场景的昇腾Ascend C编程语言. ...
- 【matplotlib基础】--样式表
Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方. 不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,通过使用不同的 ...
- 关于关闭Sublime Text自动更新提示
Sublime Text默认提示自动更新,实在让人烦不胜烦,那么有没有办法解决嘞,那当然是有的,下面就教你如何关闭Sublime Text自动更新提示 首先注册,不注册的话,一切操作都没有用:(注册码 ...
- iOS16新特性:实时活动-在锁屏界面实时更新APP消息
简介 之前在 <iOS16新特性:灵动岛适配开发与到家业务场景结合的探索实践> 里介绍了iOS16新的特性:实时更新(Live Activity)中灵动岛的适配流程,但其实除了灵动岛的展示 ...