Update on 2024/6/25 10:40 (UTF+8) : Add the Part Five and correct some words

Hello, I'm glad to show you one of the feasible proof methods for the fllowing equation:

When n approaches positive infinity, then \({f_{n-1}\over f_{n}}={{\sqrt{5}-1}\over 2}\) ,which one we usually call it golden section.

Following, we define \(f_{i}\) as the \(i_{th}\) number of a Fibonacci sequence.

Part One: The General Formula of Fibonacci Sequence

As we all know,we defines Fibonacci sequence using \(f_{n}=f_{n-1}+f_{n-2}\)

And we also know, if we have a sequence satisfy that \(g_{i}=kg_{i-1}\), then its general formula is \(g_{i}=k^{i-1}g_{1}\)

So we transform the Fibonacci sequence into this form:

\[f_{n}-\lambda f_{n-1}=\mu (f_{n-1}-\lambda f_{n-2})\tag{0}
\]

Substitute \(f_{n}=f_{n-1}+f_{n-2}\) into this equation,we will get:

\[f_{n-1}+f_{n-2}-\lambda f_{n-1}=\mu f_{n-1}-\mu\lambda f_{n-2}
\]
\[(\mu +\lambda -1)f_{n-1}=(1+\mu\lambda)f_{n-2}
\]

Because \(f_{n-1}\neq f_{n-2}\) , so:

\[\begin{cases}\mu +\lambda -1=0\\1+\mu\lambda=0\end{cases}
\]

Solve the equation, we get the answer:

\[\begin{cases}
\lambda = \frac{1+\sqrt{5}}{2}\\
\mu = \frac{1-\sqrt{5}}{2}
\end{cases}\]

Or

\[\begin{cases}
\lambda = \frac{1-\sqrt{5}}{2}\\
\mu = \frac{1+\sqrt{5}}{2}
\end{cases}\]

Substitute it into equation \((0)\)

\[f_n-\frac{1+\sqrt{5}}{2}f_{n-1}=(\frac{1-\sqrt{5}}{2})^{n-2}(f_2-\frac{1+\sqrt{5}}{2}f_1)\tag{1}
\]

Or

\[f_n-\frac{1-\sqrt{5}}{2}f_{n-1}=(\frac{1+\sqrt{5}}{2})^{n-2}(f_2-\frac{1-\sqrt{5}}{2}f_1)\tag{2}
\]

Based on the proof just now, Both of these equations hold relative to the original equation, So we try to eliminate \(f_{n-1}\) ,then we finally get what we want:

\[f_{n}=\frac{1}{\sqrt{5}}[(\frac{\sqrt{5}+1}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]
\]

Part Two: The Relationship of \(f_{n}f_{n-2}\) and \(f_{n-1}^{2}\)

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

To simplify our proof, we define that \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) ,then we have \(\frac{1}{\sqrt{5}}(P^{n}-Q^{n})\)

then we substitute the general formula to \(f_{n}f_{n-2}-f_{n-1}^{2}\) :

\[\frac{1}{\sqrt{5}\times\sqrt{5}}(P^{n}-Q^{n})(P^{n-2}-Q^{n-2})-\frac{1}{(\sqrt{5})^{2}}(P^{n-1}-Q^{n-1})^{2}
\]
\[\frac{1}{5}[P^{2n-2}+Q^{2n-2}-P^{n}Q^{n-2}-P^{n-2}Q^{n}-(P^{2n-2}+Q^{2n-2}-2P^{n-1}Q^{n-1})]
\]
\[\frac{1}{5}[-P^{n}Q^{n-2}-P^{n-2}Q^{n}+2P^{n-1}Q^{n-1}]
\]
\[-\frac{1}{5}[P^{n-1}Q^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]
\[-\frac{1}{5}[(PQ)^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]

Remember that we defined \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) , so \(PQ=-1,\frac{P}{Q}=-\frac{3+\sqrt{5}}{2},\frac{Q}{P}=-\frac{3-sqrt{5}}{2},\frac{P}{Q}+\frac{Q}{P}-2=-5\) , \(-5\times -\frac{1}{5}=1\) , then we get:

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

Part Three: The Final Proof I

According to Part Two, \(f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}\), Transfer the term to this equation.

\[f_{n}f_{n-2}=(-1)^{n-1}+f_{n-1}^{2}
\]

Then we divide both sides of the equation by \(f_{n-1}f_{n-2}\) simultaneously.

\[\frac{f_{n}}{f_{n-1}}=\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}+\frac{f_{n-1}}{f_{n-2}}
\]

In our definition, \(n\) is approaching positive infinity, namely \(n\rightarrow +\infty\) , \(\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}\rightarrow 0\) , this item has a negligible impact on our answer, so we will omit it.

\[\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}
\]

Part Four: The Final Proof II

According to Part Three, we define k that \(\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k\) , notice that \(f_{i}=f_{n-1}+f_{n-2}\)

\[\frac{f_{n-1}+f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[1+\frac{f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[f_{n-1}f_{n-2}+f_{n-2}^{2}=f_{n-1}^{2}
\]

We define that \(f_{n-1}=kf_{n-2}\)

\[kf_{n-2}^{2}+f_{n-2}^{2}=k^{2}f_{n-2}^{2}
\]

divide both sides of the equation by $$f_{n-2}^{2}$$ simultaneously.

\[k+1=k^{2}
\]

Solve this equation, we finally get \(k=\frac{1+\sqrt{5}}{2}\)

Part Five: Promotion

Notice that we completely did not use a very important property of the Fibonacci sequence: \(f_{1}=f_{2}=1\)

Actually, for every sequence satisfy that \(f_{n}=f_{n-1}+f_{n-2}\) , not only the Fibonacci sequence , the above conclusions are all valid. Just because we are familiar with the Fibonacci sequence in our daily lives, we use it as an example to prove it.

By the way, have you ever tried that \(\frac{f_{1}}{f_{2}}=1,\frac{f_{2}}{f_{3}}=0.5,\frac{f_{3}}{f_{4}}=0.6667,\frac{f_{4}}{f_{5}}=0.6,\frac{f_{5}}{f_{6}}=0.625\) . We can observe that for adjacent \(n\) , one is always greater than \(0.618\) and the other is less than \(0.618\) . This indicates another pattern we have discovered.

That's all I have to say. Thank you for reading!

A Proof of Golden Section of Fibonacci Sequence的更多相关文章

  1. 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现

    最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...

  2. ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)

    1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...

  3. python实现斐波那契数列(Fibonacci sequence)

    使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...

  4. 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)

    先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...

  5. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  6. SQL Server ->> 斐波那契数列(Fibonacci sequence)

    斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...

  7. python3 求斐波那契数列(Fibonacci sequence)

    输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...

  8. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

  9. Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度

    Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...

  10. fibonacci number & fibonacci sequence

    fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...

随机推荐

  1. 如何平稳地从nacos迁移到r-nacos?

    1. 引言 很多同学了解r-nacos特性后最开始只将r-nacos用于开发测试环境. 经过一段时间的使用后,部分同学有打算生成环境也从nacos迁移到r-nacos. 一些之前使用nacos服务的同 ...

  2. Windows版本免费PyMol的安装

    技术背景 在前面一篇博客中,我们介绍过在Linux平台下安装和使用免费版本的PyMol.其实同样的这个免费版在Windows平台上(这里以win11为例)也是支持的. 安装流程 这个免费版本的PyMo ...

  3. 微服务:openFeign

    openFeign是一个声明式http客户端.作用:基于springMVC常见注解,帮我们更优雅的实现http请求 引入依赖 <!--openFeign--> <dependency ...

  4. FP分数规划在无线通信中的应用

    更多精彩内容请关注微信公众号 '优化与算法' 前言 在数学优化中,分数规划是线性分式规划的推广.分数规划中的目标函数是两个函数的比值,这两个函数通常是非线性的.要优化的比值通常描述系统的某种效率. 1 ...

  5. 【Java】删除项目中多余的SVG图片资源

    在DB库的菜单表,每个菜单会存放对应的svg图片名称,用于菜单渲染 在页面中的渲染: 在项目的目录的存放位置: 需求是这个目录还存放了很多不需要的svg图片,需要把他们删除掉 数量有七八十张,人肉手删 ...

  6. 【Java】利用反射更改String的字符

    问题: 在不改变s变量引用的String对象的情况下,输出打印"abcd" /*** * * @param args * @return void * @author cloud9 ...

  7. 【C3】05 层叠与继承

    本文旨在让你理解CSS的一些最基本的概念 --层叠.优先级和继承-- 这些概念决定着如何将CSS应用到HTML中,以及如何解决冲突. 尽管与课程的其他部分相比,完成这节课可能看起来没有那么直接的相关性 ...

  8. 【Vue】Re05 操作数组的API

    一.响应式处理的操作: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  9. 【ECharts】02 饼图

    饼状图: <!-- 为ECharts准备一个具备大小(宽高)的Dom --> <div id="main" style="width: 600px;he ...

  10. 控制自行车前进/后退/平衡等动作,有必要使用在控制方面使用人工智能算法吗,还是传统的PID算法就完全可以胜任?

    直接说答案,用不到人工智能算法做控制,现在人工智能算法主要的应用领域为感知学习,比较典型的就是图像识别和自然语言对话系统,而在控制算法上人工智能的解决方案依然不是很成熟,目前世界上唯一一个宣布可以落地 ...