60%的人不懂Python进程Process,你懂吗?
前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
作者:蒋狗
运用多进程时,将方法放在main()中,否则会出现异常警告。
Process()
基本使用:与Thread()
类似。
Pool()
基本使用:
其中map方法用起来和内置的map函数一样,却有多进程的支持。
from multiprocessing import Pool
pool = Pool(2)
pool.map(fib, [35] * 2)
multiprocessing.dummy
模块:
multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the threading module.
对于以上部分知识点,没有实际运用过,只是单纯了解并编写Demo进行了练习,理解没有很透彻。
# -*- coding: utf-8 -*-
from multiprocessing import Process, Pool
from multiprocessing.dummy import Pool as DummyPool
import time
import datetime
def log_time(methond_name):
def decorator(f):
def wrapper(*args, **kwargs):
start_time = time.time()
res = f(*args, **kwargs)
end_time = time.time()
print('%s cost %ss' % (methond_name, (end_time - start_time)))
return res
return wrapper
return decorator
def fib(n):
if n <=2 :
return 1
return fib(n-1) + fib(n-2)
@log_time('single_process')
def single_process():
fib(33)
fib(33)
@log_time('multi_process')
def multi_process():
jobs = []
for _ in range(2):
p = Process(target=fib, args=(33, ))
p.start()
jobs.append(p)
for j in jobs:
j.join()
@log_time('pool_process')
def pool_process():
pool = Pool(2)
pool.map(fib, [33]*2)
@log_time('dummy_pool')
def dummy_pool():
pool = DummyPool(2)
pool.map(fib, [33]*2)
if __name__ == '__main__':
single_process()
multi_process()
pool_process()
dummy_pool()
基于Pipe的parmap
理解稍有困难。注意:如果你Python基础不够扎实,可以点我进裙看我的最新入门到实战教程复习
队列
实现生产消费者模型,一个队列存放任务,一个队列存放结果。 multiprocessing
模块下也有Queue
,但不提供task_done()
和join()
方法。故利用Queue
存放结果,JoinableQueue()
来存放任务。
仿照的Demo,一个消费者进程和一个生产者进程:
# -*- coding: utf-8 -*-
from multiprocessing import Process, Queue, JoinableQueue
import time
import random
def double(n):
return n * 2
def producer(name, task_q):
while 1:
n = random.random()
if n > 0.8: # 大于0.8时跳出
task_q.put(None)
print('%s break.' % name)
break
print('%s produce %s.' % (name, n))
task_q.put((double, n))
def consumer(name, task_q, result_q):
while 1:
task = task_q.get()
if task is None:
print('%s break.' % name)
break
func, arg = task
res = func(arg)
time.sleep(0.5) # 阻塞
task_q.task_done()
result_q.put(res)
print('%s consume %s, result %s' % (name, arg, res))
def run():
task_q = JoinableQueue()
result_q = Queue()
processes = []
p1 = Process(name='p1', target=producer, args=('p1', task_q))
c1 = Process(name='c1', target=consumer, args=('c1', task_q, result_q))
p1.start()
c1.start()
processes.append(p1)
processes.append(c1)
# join()阻塞主进程
for p in processes:
p.join()
# 子进程结束后,输出result中的值
while 1:
if result_q.empty():
break
result = result_q.get()
print('result is: %s' % result)
if __name__ == '__main__':
run()
如果存在多个consumer()
进程,只会有一个consumer()
进程能取出None
并break,其他的则会在task_q.get()
一直挂起,尝试在consumer()
方法中添加超时退出。
import queue
def consumer(name, task_q, result_q):
while 1:
try:
task = task_q.get(1) # 1s
except queue.Empty:
print('%s time out, break.' % name)
if task is None:
print('%s break.' % name)
break
func, arg = task
res = func(arg)
time.sleep(0.5) # 阻塞
task_q.task_done()
result_q.put(res)
print('%s consume %s, result %s' % (name, arg, res))
共享内存
利用sharedctypes
中的Array
, Value
来共享内存。
下例为仿照。
# -*- coding: utf-8 -*-
from pprint import pprint
# 共享内存
from multiprocessing import sharedctypes, Process, Lock
from ctypes import Structure, c_bool, c_double
pprint(sharedctypes.typecode_to_type)
lock = Lock()
class Point(Structure):
_fields_ = [('x', c_double), ('y', c_double)] # _fields_
def modify(n, b, s, arr, A):
n.value **= 2
b.value = True
s.value = s.value.upper()
arr[0] = 10
for a in A:
a.x **= 2
a.y **= 2
if __name__ == '__main__':
n = sharedctypes.Value('i', 7)
b = sharedctypes.Value(c_bool, False, lock=False)
s = sharedctypes.Array('c', b'hello world', lock=lock) # bytes
arr = sharedctypes.Array('i', range(5), lock=True)
A = sharedctypes.Array(Point, [(1.875, -6.25), (-5.75, 2.0)], lock=lock)
p = Process(target=modify, args=(n, b, s, arr, A))
p.start()
p.join()
print(n.value)
print(b.value)
print(s.value)
print(arr[:])
print([(a.x, a.y) for a in A])
实际项目中利用Value
来监测子进程的任务状态, 并通过memcached来存储更新删除。
# -*- coding: utf-8 -*-
from multiprocessing import Process, Value
import time
import datetime
import random
FINISHED = 3
FAILED = 4
INPROCESS = 2
WAITING = 1
def execute_method(status, process):
time.sleep(1)
status.value = INPROCESS # test
time.sleep(1)
status.value = FINISHED # test
time.sleep(0.5)
def run(execute_code):
status = Value('i', WAITING )
process = Value('f', 0.0)
# mem_cache.set('%s_status' % execute_code, status.value, 0)
# mem_cache.set('%s_process' % execute_code, process .value, 0)
p = Process(target=execute_method, args=(status, process))
p.start()
start_time = datetime.datetime.now()
while True:
print(status.value)
now_time = datetime.datetime.now()
if (now_time - start_time).seconds > 30: # 超过30sbreak
# mem_cache.delete('%s_status' % execute_code)
# mem_cache.delete('%s_process' % execute_code)
print('execute failed')
p.terminate()
break
if status.value == 3:
# mem_cache.delete('%s_status' % execute_code)
# mem_cache.delete('%s_process' % execute_code)
print('end execute')
break
else:
# mem_cache.set('%s_status' % execute_code, status.value, 0)
# mem_cache.set('%s_process' % execute_code, process .value, 0)
print('waiting or executing')
time.sleep(0.5)
p.join()
服务进程
下例为仿照博客中的服务进程的例子,简单的展示了Manager
的常见的共享方式。
一个multiprocessing.Manager对象会控制一个服务器进程,其他进程可以通过代理的方式来访问这个服务器进程。 常见的共享方式有以下几种:
1. Namespace。创建一个可分享的命名空间。
2. Value/Array。和上面共享ctypes对象的方式一样。
dict/list。创建一个可分享的
3. dict/list,支持对应数据结构的方法。
4. Condition/Event/Lock/Queue/Semaphore。创建一个可分享的对应同步原语的对象。
# -*- coding: utf-8 -*-
from multiprocessing import Manager, Process
def modify(ns, lproxy, dproxy):
ns.name = 'new_name'
lproxy.append('new_value')
dproxy['new'] = 'new_value'
def run():
# 数据准备
manager = Manager()
ns = manager.Namespace()
ns.name = 'origin_name'
lproxy = manager.list()
lproxy.append('origin_value')
dproxy = manager.dict()
dproxy['origin'] = 'origin_value'
# 子进程
p = Process(target=modify, args=(ns, lproxy, dproxy))
p.start()
print(p.pid)
p.join()
print('ns.name: %s' % ns.name)
print('lproxy: %s' % lproxy)
print('dproxy: %s' % dproxy)
if __name__ == '__main__':
run()
上例主要是展示了Manager
中的共享对象类型和代理,查看源码知是通过register()
方法。
multiprocessing/managers.py:
#
# Definition of SyncManager
#
class SyncManager(BaseManager):
'''
Subclass of `BaseManager` which supports a number of shared object types.
The types registered are those intended for the synchronization
of threads, plus `dict`, `list` and `Namespace`.
The `multiprocessing.Manager()` function creates started instances of
this class.
'''
SyncManager.register('Queue', queue.Queue)
SyncManager.register('JoinableQueue', queue.Queue)
SyncManager.register('Event', threading.Event, EventProxy)
SyncManager.register('Lock', threading.Lock, AcquirerProxy)
SyncManager.register('RLock', threading.RLock, AcquirerProxy)
SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy)
SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore,
AcquirerProxy)
SyncManager.register('Condition', threading.Condition, ConditionProxy)
SyncManager.register('Barrier', threading.Barrier, BarrierProxy)
SyncManager.register('Pool', pool.Pool, PoolProxy)
SyncManager.register('list', list, ListProxy)
SyncManager.register('dict', dict, DictProxy)
SyncManager.register('Value', Value, ValueProxy)
SyncManager.register('Array', Array, ArrayProxy)
SyncManager.register('Namespace', Namespace, NamespaceProxy)
# types returned by methods of PoolProxy
SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False)
SyncManager.register('AsyncResult', create_method=False)
除了在子进程中,还可利用Manager()
来在不同进程间通信,如下面的分布式进程简单实现。
分布进程
和上例的主要区别是,非子进程间进行通信。
manager_server.py:
# -*- coding: utf-8 -*-
from multiprocessing.managers import BaseManager
host = '127.0.0.1'
port = 8080
authkey = b'python'
shared_list = []
class ServerManager(BaseManager):
pass
ServerManager.register('get_list', callable=lambda: shared_list)
server_manager = ServerManager(address=(host, port), authkey=authkey)
server = server_manager.get_server()
server.serve_forever()
manager_client.py
# -*- coding: utf-8 -*-
from multiprocessing.managers import BaseManager
host = '127.0.0.1'
port = 8080
authkey = b'python'
class ClientManager(BaseManager):
pass
ClientManager.register('get_list')
client_manager = ClientManager(address=(host, port), authkey=authkey)
client_manager.connect()
l = client_manager.get_list()
print(l)
l.append('new_value')
print(l)
运行多次后,shared_list
中会不断添加new_value
。
仿照廖雪峰教程上的分布式进程加以适当修改。
manager_server.py:
# -*- coding: utf-8 -*-
from multiprocessing.managers import BaseManager
from multiprocessing import Condition, Value
import queue
host = '127.0.0.1'
port = 8080
authkey = b'python'
task_q = queue.Queue(10)
result_q = queue.Queue(20)
cond = Condition()
done = Value('i', 0)
def double(n):
return n * 2
class ServerManager(BaseManager):
pass
ServerManager.register('get_task_queue', callable=lambda: task_q)
ServerManager.register('get_result_queue', callable=lambda: result_q)
ServerManager.register('get_cond', callable=lambda: cond)
ServerManager.register('get_done', callable=lambda: done)
ServerManager.register('get_double', callable=double)
server_manager = ServerManager(address=(host, port), authkey=authkey)
server = server_manager.get_server()
print('start server')
server.serve_forever(
manager_producer.py:
# -*- coding: utf-8 -*-
from multiprocessing.managers import BaseManager
import random
import time
host = '127.0.0.1'
port = 8080
authkey = b'python'
class ProducerManager(BaseManager):
pass
ProducerManager.register('get_task_queue')
ProducerManager.register('get_cond')
ProducerManager.register('get_done')
producer_manager = ProducerManager(address=(host, port), authkey=authkey)
producer_manager.connect()
task_q = producer_manager.get_task_queue()
cond = producer_manager.get_cond()
# done = producer_manager.get_done()
count = 20 # 最多有20个任务
while count > 0:
if cond.acquire():
if not task_q.full():
n = random.randint(0, 10)
task_q.put(n)
print("Producer:deliver one, now tasks:%s" % task_q.qsize())
cond.notify()
count -= 1
time.sleep(0.5)
else:
print("Producer:already full, stop deliver, now tasks:%s" % task_q.qsize())
cond.wait()
cond.release()
# done.value = 1
print('Producer break')
manager_consumer.py:
# -*- coding: utf-8 -*-
from multiprocessing.managers import BaseManager
host = '127.0.0.1'
port = 8080
authkey = b'python'
class ConsumerManager(BaseManager):
pass
ConsumerManager.register('get_task_queue')
ConsumerManager.register('get_result_queue')
ConsumerManager.register('get_cond')
# ConsumerManager.register('get_done')
ConsumerManager.register('get_double')
consumer_manager = ConsumerManager(address=(host, port), authkey=authkey)
consumer_manager.connect()
task_q = consumer_manager.get_task_queue()
result_q = consumer_manager.get_result_queue()
cond = consumer_manager.get_cond()
# done = consumer_manager.get_done()
while 1:
if result_q.full():
print('result queue is full')
break
if cond.acquire():
if not task_q.empty():
arg = task_q.get()
res = consumer_manager.get_double(arg)
print("Consumer:consume one, now tasks:%s" % task_q.qsize())
result_q.put(res)
cond.notify()
else:
print("Consumer:only 0, stop consume, products")
cond.wait()
cond.release()
while 1:
if result_q.empty():
break
result = result_q.get()
print('result is: %s' % result)
60%的人不懂Python进程Process,你懂吗?的更多相关文章
- Python 进程(process)
1. 进程 1.1 进程的创建 fork 正在运行着的代码,就称为进程 # 示例: import os # 注意: fork 函数,只在 Unix/Linux/Mac 上运行, windows 不可以 ...
- Python进程、线程、协程详解
进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. ...
- python——进程、线程、协程
Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...
- python2.0 s12 day8 _ python线程&python进程
1.进程.与线程区别2.cpu运行原理3.python GIL全局解释器锁4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 6.q ...
- python 进程和线程(代码知识部分)
二.代码知识部分 一 multiprocessing模块介绍: python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情 ...
- 第 10 章 python进程与多进程
一.背景知识 顾明思义,进程即正在执行的一个过程,进程是对正在云的程序的一个抽象. 进程的概念起源与操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一,操作系统的其他所 ...
- python——进程基础
我们现在都知道python的多线程是个坑了,那么多进程在这个时候就变得很必要了.多进程实现了多CPU的利用,效率简直棒棒哒~~~ 拥有一个多进程程序: #!/usr/bin/env python #- ...
- python进程、线程、协程(转载)
python 线程与进程简介 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资 ...
- python进程池剖析(一)
python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要 ...
随机推荐
- 解决 scp 和rsync 同步失败【rsync error: unexplained error (code 255) at io.c(226) [sender=3.1.2]】
解决 scp 和rsync 同步失败 报错信息截图: 解决问题的步骤: 1.检查对方的scp和rsync 是否能使用. rsync 在使用的时候,需要客户端和服务端都有rsync工具.scp 和 rs ...
- iOS地理反地理编码--CoreLocation
.sidebar{float:left;width:220px;} .container-fluid>.content{margin-left:240px;} a{color:#0069d6;t ...
- Oracle instant client免安装Oracle客户端配置
不想安装几个G的完整版client,可以直接通过安装包安装的时候选择instant client,如果没有安装包,也可以直接去官网下载一个即时客户端,64位的windows包大小只有78MB左右 传送 ...
- [spark程序]统计人口平均年龄(本地文件)(详细过程)
一.题目描述 (1)编写Spark应用程序,该程序可以在本地文件系统中生成一个数据文件peopleage.txt,数据文件包含若干行(比如1000行,或者100万行等等)记录,每行记录只包含两列数据, ...
- pat 1027 Colors in Mars(20 分)
1027 Colors in Mars(20 分) People in Mars represent the colors in their computers in a similar way as ...
- hdu 1233 还是畅通工程 (prim, kruskal)
还是畅通工程Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 【前端VUE】【后端SSM】 记录一次多条件查询状态下加载极慢的解决思路和解决方案
最近在开发一个Online Judge系统,其中有一个“挑战模式”模块,如图所示 由于是第一次使用ECharts做开发,所以完成整个模块的过程也是边写边学了,记录一下问题: 遇到的问题:在最开始进行测 ...
- 微信小程序 子组件给父组件传参
子组件给父组件传参只需这4步: 子组件的两步: 1.子组件绑定函数 addInfo <button type="primary" bindtap="addInfo& ...
- C++程序的耦合性设计
声明:本文部分采用和参考<代码里的世界观-通往架构师之路>中内容,可以说是该书中耦合性一章的读后感,感谢该书的作者余叶老师的无私分享. 1.什么是耦合? 耦合其实就是程序之间的相关性. 程 ...
- python selenium框架的Xpath定位元素
我们工作中经常用到的定位方式有八大种:id name class_name tag_name link_text partial_link_text xpath css_selector 本篇内容主要 ...