Luogu最小生成树模板题
Prim
原理与dijkstra几乎相同,每次找最优的点,用这个点去松弛未连接的点,也就是用这个点去与未连接的点连接。

#include<cstdio>
#include<vector>
using namespace std;
struct data
{
int to,val;
};
vector<data> edge[200001];
int n,m,cost[5001],ans;
bool visit[5001];
void add(int x,int y,int z)
{
data tmp;
tmp.to=y;
tmp.val=z;
edge[x].push_back(tmp);
}
void init()
{
scanf("%d%d",&n,&m);
int x,y,z;
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
}
void First()
{
for (int i=1;i<=n;i++) cost[i]=0xfffffff;
cost[1]=0;
}
void prim()
{
for (int i=1;i<=n;i++)
{
int mincost=0xfffffff;
int mini=0;
for (int j=1;j<=n;j++)
if (mincost>cost[j]&&!visit[j]) mincost=cost[j],mini=j;
visit[mini]=true;
ans+=cost[mini];
for (int j=0;j<edge[mini].size();j++)
if (!visit[edge[mini][j].to]&&cost[edge[mini][j].to]>edge[mini][j].val)
cost[edge[mini][j].to]=edge[mini][j].val;
}
}
int main()
{
init();
First();
prim();
printf("%d",ans);
return 0;
}

Kruskal
运用并查集,存储边,以权值为关键字进行排序,从小到大查看边,如果这条边的两个点不在同一集合内,就加入同一集合并压缩路径。

#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
struct data
{
int str,to,val;
}edge[200001];
int n,m,father[5001],ans,cnt;
bool comp(data a,data b)
{
return a.val<b.val;
}
void init()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&edge[i].str,&edge[i].to,&edge[i].val);
}
}
int getfather(int v)
{
if (father[v]!=v) father[v]=getfather(father[v]);
return father[v];
}
void hb(int x,int y)
{
x=getfather(x);
y=getfather(y);
father[x]=y;
}
bool check(int a,int b)
{
a=getfather(a);
b=getfather(b);
if (a==b) return true;
return false;
}
int main()
{
init();
for (int i=0;i<=n;i++)
father[i]=i;
sort(edge+1,edge+1+m,comp);
for (int i=1;i<=m;i++)
{
if (!check(edge[i].str,edge[i].to))
{
hb(edge[i].str,edge[i].to);
ans+=edge[i].val;
cnt++;
}
}
if (cnt<n-1) printf("orz");
else printf("%d",ans);
return 0;
}

【2018寒假集训Day 8】【最小生成树】Prim和Kruskal算法模板的更多相关文章

  1. 无向带权图的最小生成树算法——Prim及Kruskal算法思路

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  2. 图的最小生成树(Prim、Kruskal)

    理论: Prim: 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V).TE={}开始.重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E ...

  3. [数据结构]最小生成树算法Prim和Kruskal算法

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  4. 图的最小生成树的理解和实现:Prim和Kruskal算法

    最小生成树 一个连通图的生成树是一个极小的连通子图,它含有图中所有的顶点,但只有足以构成一棵树的n-1条边.我们将构造连通网的最小代价生成树称为最小生成树(Minimum Cost Spanning ...

  5. poj1861 最小生成树 prim &amp; kruskal

    // poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...

  6. 最小生成树--Prim及Kruskal

    //prim算法#include<cstdio> #include<cmath> #include<cstring> #include<iostream> ...

  7. 算法(图论)——最小生成树及其题目应用(prim和Kruskal算法实现)

    题目 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? Kruskal算法 特点 适用于稀疏图,时间复杂度 是nlogn的. 核心思想 从小到大选取不会产生环的边. 代码实现 代码中 ...

  8. prim和kruskal算法

    //邻接矩阵 int n,G[MAXV][MAXN]; int d[MAXV];//表示到树的距离 bool vis[MAXV]={false}; int prim(){ fill(d,d+MAXV, ...

  9. 最小生成树(II)与Kruskal算法

    为防止网页加载过慢,故分两章.上接https://www.cnblogs.com/Uninstalllingyi/p/10479470.html Kruskal算法——将森林合并成树 玩过瘟疫公司吗… ...

随机推荐

  1. 5.分析snkrs的Android的DeviceID生产规则

    分析Android的DeviceID生产 前面已经把web端的分析了一些,要想实现其实容易也难,容易是规则很容易,难是时间生成控制很难,我之前大概花了一周时间分析和梳理,然后行为测试,之前我已经讲过c ...

  2. Nginx在Window上简单的使用

    先上Nginx在Window上的基本常用指令: IP_hase也可以解决Session共享的问题:不过不推荐这样使用,建议使用 Memcache/redis来处理 session共享的问题 轮询还是权 ...

  3. Java基础(五)继承和多态

    1.多态 先来看一个例子,其中Employee类是父类,Manager类继承了Employee类: public static void main(String[] args) { // constr ...

  4. TCP Socket服务端客户端(二)

    本文服务端客户端封装代码转自https://blog.csdn.net/zhujunxxxxx/article/details/44258719,并作了简单的修改. 1)服务端 此类主要处理服务端相关 ...

  5. django-URL之path标准语法(三)

    path(route,vie,nane=None,**kwargs) route:表示路径,从端口以后URL的地址,到/结束.(必选) view:表示匹配成功后,需要调用的视图,view必须是个函数, ...

  6. jquery复习

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. 用c语言实现前序创建二叉树(递归),分别用前序,中序,后序遍历,以及分别输出节点个数和叶子节点个数

    本人c语言小白一枚,近期在学习数据结构(c语言版),特写此随笔,做一些总结和分享,如有不当之处,请各位技术大牛斧正 首先我们用一个结构体来抽象树的结点,代码如下(这里我们存放的数据为char型,大家可 ...

  8. Caused by: java.lang.IllegalArgumentException: Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required [ IDEA mybatis项目报错 ]

    今天笔者用Springboot框架整合Mybatis做一个小小的项目: 代码写完,在运行项目时,IDEA给我报了3处错误: org.springframework.beans.factory.Unsa ...

  9. numpy.array 中的运算

    简单运算 现在有有个需求,给定一个数组,让数组中每一个数乘以2,怎么做呢 n = 10 L = [i for i in range(n)] L # [0, 1, 2, 3, 4, 5, 6, 7, 8 ...

  10. 基于 Jenkins Pipeline 自动化部署

    最近在公司推行Docker Swarm集群的过程中,需要用到Jenkins来做自动化部署,Jenkins实现自动化部署有很多种方案,可以直接在jenkins页面写Job,把一些操作和脚本都通过页面设置 ...