GNSS学习笔记--坐标转换
GNSS 坐标转换
GNSS计算主要涉及三个坐标系,地心地固坐标系,地理坐标系和站心坐标系。这里主要介绍一下三个坐标的含义和转换公式。
地心地固坐标系如图X,Y,Z表示 (ECEF坐标系),以地心O为坐标原点,Z轴指向协议地球北极,X轴指向参考子午面与地球赤道的交点,也叫地球坐标系。一般GNSS坐标计算都在地心地固坐标系下进行的。由于地球是椭圆形,有WGS-84和CGC2000等多种标准
地理坐标系则通过经度(longitude),纬度(latitude)和高度(altitude)来表示地球的位置,也叫经纬高坐标系(LLA坐标系)。
站心坐标系以用户所在位置P为坐标原点,三个轴分别指向东向,北向和天向,也叫东北天坐标系(enu坐标系)。站心坐标系的天向方向和地理坐标系的高度方向是一致的。站心坐标系用在惯性导航和卫星俯仰角计算中较多。
参数 | WGS-84 | CGC200 |
---|---|---|
基准椭球体的长半径a | 6378137.0 m | 6378137.0 m |
基准椭球体的极扁率f | 1/298.257223565 | 1/298.257223563 |
地球自转角速度We | 7.2921151467*1e-5 | 7.2921151467*1e-5 |
地球引力和地球质量的乘积GM | 3986004.418*1e8 | 3986004.418*1e8 |
光速 | 2.99792458*1e8 m/s | 2.99792458*1e8 m/s |
LLA坐标系转ECEF坐标系
LLA坐标系下的(lon,lat,alt)转换为ECEF坐标系下点(X,Y,Z)
\[\begin{cases}
X=(N+alt)cos(lat)cos(lon)\\
Y=(N+alt)cos(lat)sin(lon)\\
Z=(N(1-e^2)+alt)sin(lat)
\end{cases}\]
其中e为椭球偏心率,N为基准椭球体的曲率半径
\[\begin{cases}
e^2=\frac{a^2-b^2}{a^2}\\
N=\frac{a}{\sqrt{1-e^2sin^2lat}}
\end{cases}\]
由于WGS-84下极扁率\(f=\frac{a-b}{a}\),偏心率e和极扁率f之间的关系:
\[e^2=f(2-f)\]
坐标转换公式也可以为
\[\begin{cases}
X=(N+alt)cos(lat)cos(lon)\\
Y=(N+alt)cos(lat)sin(lon)\\
Z=(N(1-f)^2+alt)sin(lat)
\end{cases}\]
\[N=\frac{a}{\sqrt{1-f(2-f)sin^2lat}}\]
ECEF坐标系转LLA坐标系
ECEF坐标系下点(X,Y,Z)转换为LLA坐标系下的(lon,lat,alt)
\[lon=arctan(\frac{y}{x})\]
\[alt=\frac{p}{cos(lat)-N}\]
\[lat=arctan\bigg[\frac{z}{p}\bigg(1-e^2\frac{N}{N+alt}\bigg)^{-1}\bigg]\]
\[p=\sqrt{x^2+y^2}\]
一开始lon是未知的,可以假设为0,经过几次迭代之后就能收敛
ECEF坐标系转enu坐标系
用户所在坐标点\(P_0=(x_0,y_0,z_0)\),,计算点\(P=(x,y,z)\)在以点\(P_{0}\)为坐标原点的enu坐标系位置\((e,n,u)\)这里需要用到LLA坐标系的数据,\(P_0\)的LLA坐标点为\(LLA_0=(lon_0,lat_0,alt_0)\)
\[
\begin{gathered}
\left[ \begin{array}{ccc}
\Delta{x}\\\Delta{y}\\\Delta{z}
\end{array}
\right]=
\left[ \begin{array}{ccc}
x\\y\\z\end{array}\right]-
\left[ \begin{array}{ccc}
x_0\\y_0\\z_0\end{array}\right]
\end{gathered}
\]
\[
\begin{gathered}
\left[ \begin{array}{ccc}
e\\n\\u
\end{array}
\right]=S\cdot
\left[ \begin{array}{ccc}
\Delta{x}\\\Delta{y}\\\Delta{z}
\end{array}
\right]
\end{gathered}=
\left[ \begin{array}{ccc}
-sin(lon_0) & cos(lon_0) & 0 \\
-sin(lat_0)cos(lon_0) & -sin(lat_0)sin(lon_0) & cos(lat_0) \\
cos(lat_0)cos(lon_0) & cos(lat_0)sin(lon_0) & sin(lat_0)
\end{array} \right]\cdot
\left[ \begin{array}{ccc}
\Delta{x}\\\Delta{y}\\\Delta{z}
\end{array}
\right]
\]
即坐标变换矩阵\(S=\left[ \begin{array}{ccc} -sin(lon_0) & cos(lon_0) & 0 \\ -sin(lat_0)cos(lon_0) & -sin(lat_0)sin(lon_0) & cos(lat_0) \\ cos(lat_0)cos(lon_0) & cos(lat_0)sin(lon_0) & sin(lat_0) \end{array} \right]\)
enu坐标系转ECEF坐标系
\(S\)为单位正交矩阵
\[\mathbf{S}^{-1}=\mathbf{S}^\mathrm{T}\]
反之
\[
\begin{gathered}
\left[ \begin{array}{ccc}
\Delta{x}\\\Delta{y}\\\Delta{z}\end{array}
\right]=S^{-1}\cdot\left[ \begin{array}{ccc}
e\\n\\u\end{array} \right]=
\mathbf{S}^\mathrm{T}\cdot\left[ \begin{array}{ccc}
e\\n\\u\end{array} \right]
\end{gathered}
\]
LLA坐标系转enu坐标系
上述可以看到,从LLA坐标系转换到enu坐标系有较多计算量,在考虑地球偏心率\(e\)很小的前提下,可以做一定的近似公式计算
\[
\left[ \begin{array}{ccc}
\Delta e\\ \Delta n \\ \Delta u
\end{array}
\right]=
\left[\begin{array}{ccc}
a\cdot cos(lat)\cdot \Delta lon & 0 & 0 \\
0 & a \cdot \Delta lat & 0 \\
0 & 0 & \Delta alt
\end{array}
\right]
\]
GNSS学习笔记--坐标转换的更多相关文章
- ArcGIS案例学习笔记-中国2000坐标转换实例
ArcGIS案例学习笔记-中国2000坐标转换实例 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:西安1980.中国2000.WGS84(GPS)等任意坐标系 ...
- opencv学习笔记(三)基本数据类型
opencv学习笔记(三)基本数据类型 类:DataType 将C++数据类型转换为对应的opencv数据类型 OpenCV原始数据类型的特征模版.OpenCV的原始数据类型包括unsigned ch ...
- 【Stage3D学习笔记续】山寨Starling(八):核心优化(批处理)的实现
批处理是使GPU进行高效绘制的一种技术手段,也是整个渲染流程中最核心的技术,到目前为止我们并没有使用到这种技术手段,下面我们看看我们现在的渲染机制. 先想一想我们最开始是怎么向GPU绘制一幅图像的,可 ...
- 【Visual C++】游戏编程学习笔记之八:鼠标输入消息(小demo)
本系列文章由@二货梦想家张程 所写,转载请注明出处. 作者:ZeeCoder 微博链接:http://weibo.com/zc463717263 我的邮箱:michealfloyd@126.c ...
- ArcGIS案例学习笔记1_1
ArcGIS案例学习笔记1_1 联系方式:谢老师,135_4855_4328, xiexiaokui#qq.com 时间:第一天上午 准备 0.U盘复制ArcGIS培训*** 1.练习数据不要放到桌面 ...
- 孙鑫视频VC++深入详解学习笔记
孙鑫视频VC++深入详解学习笔记 VC++深入详解学习笔记 Lesson1: Windows程序运行原理及程序编写流程 Lesson2: 掌握C++基本语法 Lesson3: MFC框架程序剖析 Le ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十九章:法线贴图
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十九章:法线贴图 学习目标 理解为什么需要法线贴图: 学习法线贴图如 ...
- OpenLayers 6 学习笔记
这个是真的学习笔记!不是教程 转载请声明:https://www.cnblogs.com/onsummer/p/12159366.html 基于openlayers 6.x api不太好查,就基于腾讯 ...
- Tensorflow学习笔记No.11
图像定位 图像定位是指在图像中将我们需要识别的部分使用定位框进行定位标记,本次主要讲述如何使用tensorflow2.0实现简单的图像定位任务. 我所使用的定位方法是训练神经网络使它输出定位框的四个顶 ...
随机推荐
- Xmind软件——xmind 8 pro下载激活推荐!!
亲测有效,在csdn上找到一个. 下载激活xmind 8 pro链接
- WebShell代码分析溯源(三)
WebShell代码分析溯源(三) 一.一句话变形马样本 <?php $g = array('','s');$gg = a.$g[1].ser.chr('116');@$gg($_POST[ge ...
- ADO.NET ORM数据库增删改查封装(工具一)
约束 public abstract class BaseModel { public int Id { get; set; } } 连接字符串 public static readonly stri ...
- 史诗级最强教科书式“NIO与Netty编程”
史诗级最强教科书式“NIO与Netty编程” 1.1 概述 1.2 文件IO 1.2.1 概述和核心API 1.2.2 案例 1.3 网络IO 1.3.1 概述和核心API 3.4 AIO编程 3.5 ...
- PHP mysqli_stat MySQLi 函数
定义和用法 mysqli_stat - 获取当前系统状态信息 版本支持 PHP4 PHP5 PHP7 不支持 支持 支持 语法 mysqli_stat ( mysqli $link ) mysqli_ ...
- SAP记账期间变式
记帐期间变式能够控制每个公司代码中打开的记账期间,包括正常记账期间和特别记账期间.可以为企业组织架构中的每个公司代码定义一个归其单独使用的记账期间变式. 记账期间变式独立于会计年度变 ...
- iOS网络开发—POST请求和GET请求
创建GET请求: // 1.设置请求路径 NSString *urlStr=[NSString stringWithFormat:@"http://192.168.1.53:8080/MJS ...
- 对Android 8.0以上版本通知点击无效的一次分析
版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/178 对Android 8.0以上版本通知点击无效的一次分 ...
- iOS常用算法之单链表查找倒数第n个节点(图解)
拿到题目, 首先要先了解链表数据结构, 如下图: 常规思路: 利用数组, 遍历整个单链表, 将每个节点装入数组中, 最终拿到数组根据索引(数组长度-1-n)就得到了倒数第n个元素, 这里要注意从数组中 ...
- 远程访问阿里云服务器jupyter
官网链接 一.pip安装jupyter安装Anaconda的话,会自动按照jupyter,就不需要再使用pip安装了 pip3 install jupyter 二.生成jupyter notebook ...