前言

上一节(堆外内存与零拷贝)当中我们从jvm堆内存的视角解释了一波零拷贝原理,但是仅仅这样还是不够的。

为了彻底搞懂零拷贝,我们趁热打铁,接着上一节来继续讲解零拷贝的底层原理。

感受一下NIO的速度

之前的章节中我们说过,Nio并不能解决网络传输的速度。但是为什么很多人却说Nio的速度比传统IO快呢?

没错,zero copy。我们先抛出一个案例,然后根据案例来讲解底层原理。

首先,我们实现一个IO的服务端接受数据,然后分别用传统IO传输方式和NIO传输方式来直观对比传输相同大小的文件所耗费的时间。

服务端代码如下:

public class OldIOServer {

    public static void main(String[] args) throws Exception {
ServerSocket serverSocket = new ServerSocket(8899); while (true) {
Socket socket = serverSocket.accept();
DataInputStream dataInputStream = new DataInputStream(socket.getInputStream()); try {
byte[] byteArray = new byte[4096]; while (true) {
int readCount = dataInputStream.read(byteArray, 0, byteArray.length); if (-1 == readCount) {
break;
}
}
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
}

这个是最普通的socket编程的服务端,没什么好多说的。就是绑定本地的8899端口,死循环不断接受数据。

传统IO传输

public class OldIOClient {

    public static void main(String[] args) throws Exception {
Socket socket = new Socket("localhost", 8899); String fileName = "C:\\Users\\Administrator\\Desktop\\test.zip"; //大小两百M的文件
InputStream inputStream = new FileInputStream(fileName); DataOutputStream dataOutputStream = new DataOutputStream(socket.getOutputStream()); byte[] buffer = new byte[4096];
long readCount;
long total = 0; long startTime = System.currentTimeMillis(); while ((readCount = inputStream.read(buffer)) >= 0) {
total += readCount;
dataOutputStream.write(buffer);
} System.out.println("发送总字节数: " + total + ", 耗时: " + (System.currentTimeMillis() - startTime)); dataOutputStream.close();
socket.close();
inputStream.close();
}
}

客户端向服务端发送一个119M大小的文件。计算一下耗时用了多久

由于我的笔记本性能太渣,大概平均每次消耗的时间大概是 500ms左右。值得注意的是,我们客户端和服务端分配的缓存大小都是4096个字节。如果将这个字节分配的更小一点,那么所耗时间将会更多。因为上述传统的IO实际表现并不是我们想象的那样直接将文件读到内存,然后发送。

实际情况是什么样的呢?我们在后续分析。

NIO传输

public class NewIOClient {

    public static void main(String[] args) throws Exception {
SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("localhost", 8899));
socketChannel.configureBlocking(true); String fileName = "C:\\Users\\Administrator\\Desktop\\test.zip"; //大小200M的文件 FileChannel fileChannel = new FileInputStream(fileName).getChannel(); long startTime = System.currentTimeMillis(); long transferCount = fileChannel.transferTo(0, fileChannel.size(), socketChannel); //1 System.out.println("发送总字节数:" + transferCount + ",耗时: " + (System.currentTimeMillis() - startTime)); fileChannel.close();
}
}

NIO编程不熟的同学没关系,后面会有一篇专门的章节来讲。

这里我们来关注一下注释1关于FileChannel的transferTo方法。(方法的doc文档很长。我删除了很多,只看重点)

    /**
* Transfers bytes from this channel's file to the given writable byte
* channel.
*
* <p> This method is potentially much more efficient than a simple loop
* that reads from this channel and writes to the target channel. Many
* operating systems can transfer bytes directly from the filesystem cache
* to the target channel without actually copying them. </p>
*/
public abstract long transferTo(long position, long count,
WritableByteChannel target)
throws IOException;

翻译一下:

将文件channel的数据写到指定的channel

这个方法可能比简单的将数据从一个channel循环读到另一个channel更有效,
许多操作系统可以直接从文件系统缓存传输字节到目标通道,**而不实际复制它们**。

意思是我们调用FileChannel的transferTo方法就实现了零拷贝(想实现零拷贝并不止这一种方法,有更优雅的方法,这里只是作为一个演示)。当然也要看你操作系统支不支持底层zero copy。因为这部分工作其实是操作系统来完成的。

我的电脑平均执行下来大概在200ms左右。比传统IO快了300ms。

底层原理

大家也可以用自己的电脑运行一下上述代码,看看NIO传输一个文件比IO传输一个文件快多少。

在上诉代码中,楼主这里指定的缓存只有4096个字节,而传送的文件大小有125581592个字节。

在前面我们分析过,对于传统的IO而言,读取的缓存满了以后会有两次零拷贝过程。那么换算下来传输这个文件大概在内存中进行了6w多次无意义的内存拷贝,这6w多次拷贝在我的笔记本上大概所耗费的时间就是300ms左右。这就是导致NIO比传统IO快的更本原因。

传统IO底层时序图

由上图我们可以看到。当我们想将磁盘中的数据通过网络发送的时候

  1. 底层调用的了sendfile()方法,然后切换用户态(User space)->内核态(Kemel space)。
  2. 从本地磁盘获取数据。获取的数据存储在内核态的内存空间内。
  3. 将数据复制到用户态内存空间里。
  4. 切换内核态->用户态。
  5. 用户操作数据,这里就是我们编写的java代码的具体操作。
  6. 调用操作系统的write()方法,将数据复制到内核态的socket buffer中。
  7. 切换用户态->内核态。
  8. 发送数据。
  9. 发送完毕以后,切换内核态->用户态。继续执行我们编写的java代码。

由上图可以看出。传统的IO发送一次数据,进行了两次“无意义”的内存拷贝。虽然内存拷贝对于整个IO来说耗时是可以忽略不计的。但是操作达到一定次数以后,就像我们上面案例的代码。就会由量变引起质变。导致速率大大降低。


linux2.4版本前的NIO时序图

  1. 底层调用的了sendfile()方法,然后切换用户态(User space)->内核态(Kemel space)。
  2. 从本地磁盘获取数据。获取的数据存储在内核态的内存空间内。
  3. 将内核缓存中的数据拷贝到socket缓冲中。
  4. 将socket缓存的数据发送。
  5. 发送完毕以后,切换内核态->用户态。继续执行我们编写的java代码。

可以看出,即便我们使用了NIO,其实在我们的缓存中依旧会有一次内存拷贝。拷贝到socket buffer(也就是发送缓存区)中。

到这里我们可以看到,用户态已经不需要再缓存数据了。也就是少了用户态和系统态之间的数据拷贝过程。也少了两次用户态与内核态上下文切换的过程。但是还是不够完美。因为在底层还是执行了一次拷贝。

要想实现真真意义上的零拷贝,还是需要操作系统的支持,操作系统支持那就支持。不支持你代码写出花了也不会支持。所以在linux2.4版本以后,零拷贝进化为以下模式。

linux2.4版本后的NIO时序图

这里的步骤与上面的步骤是类似的。看图可以看出,到这里内存中才真正意义上实现了零拷贝。

很多人就会发问了。为什么少了一次内核缓存的数据拷贝到socket缓存的操作?

不急,听我慢慢道来~

我们再来看另一张NIO的流程图:

上面这个图稍稍有点复杂,都看到这里了,别半途而废。多看几遍是能看懂的!

首先第一条黑线我们可以看出,在NIO只切换了两次用户态与内核态之间的上下文切换。

我们重点看这张图下面的部分。

首先我们将硬盘(hard drive)上的数据复制到内核态缓存中(kemel buffer)。然后发生了一次拷贝(CPU copy)到socket缓存中(socket buffer)。最后再通过协议引擎将数据发送出去。

在linux2.4版本前的的确是这样。但是!!!!

在linux2.4版本以后,上图中的从内核态缓存中(kemel buffer)的拷贝到socket缓存中(socket buffer)的就不再是数据了。而是对内核态缓存中数据的描述符(也就是指针)。协议引擎发送数据的时候其实是通过socket缓存中的描述符。找到了内核态缓存中的数据。再将数据发送出去。这样就实现了真正的零拷贝。

总结

我们花了两篇文章,一篇从jvm堆内存的角度出发(堆外内存与零拷贝),以及本篇从操作体统底层出发来讲解零拷贝。足以说明零拷贝的重要性,各位可千万得重视哟,就算你觉得不重要,面试也是会经常被问到,如果你能把上面的流程讲明白,我相信一定也是一大亮点~

Netty基础系列(5) --零拷贝彻底分析的更多相关文章

  1. Netty基础系列(4) --堆外内存与零拷贝详解

    前言 到目前为止,我们知道Nio当中有三个最最核心的组件,分别是:Selelctor,Channel,Buffer.在Netty基础系列(3) --彻底理解NIO 这一篇文章中只是进行了大致的介绍. ...

  2. Netty基础系列(3) --彻底理解NIO

    前言 上一节中我们提到了同步异步与阻塞非阻塞的区别,知道了同步并不等于阻塞.而本节的主角NIO是一种同步非阻塞的I/O模型,并且是I/O多路复用模型.NIO在java中被称为 New I/O.它并不能 ...

  3. linux驱动基础系列--linux spi驱动框架分析

    前言 主要是想对Linux 下spi驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.设备模型等也不进行详细说明原理.如果有任何错误地方,请指出,谢谢! spi ...

  4. linux驱动基础系列--linux spi驱动框架分析(续)

    前言 这篇文章是对linux驱动基础系列--linux spi驱动框架分析的补充,主要是添加了最新的linux内核里设备树相关内容. spi设备树相关信息 如之前的文章里所述,控制器的device和s ...

  5. Netty中ByteBuf 的零拷贝

    转载:https://www.jianshu.com/p/1d1fa2fe1ed9 此文章已同步发布在我的 segmentfault 专栏. 根据 Wiki 对 Zero-copy 的定义: &quo ...

  6. Netty源码解析 -- 零拷贝机制与ByteBuf

    本文来分享Netty中的零拷贝机制以及内存缓冲区ByteBuf的实现. 源码分析基于Netty 4.1.52 Netty中的零拷贝 Netty中零拷贝机制主要有以下几种 1.文件传输类DefaultF ...

  7. 深入了解Netty【二】零拷贝

    引言 以下翻译自:Zero Copy I: User-Mode Perspective 零拷贝是什么? 为了更好地理解问题的解决方案,我们首先需要理解问题本身.让我们来看看什么是参与网络服务器的简单过 ...

  8. Netty基础系列(1) --linux网路I/O模型

    引言 我一直认为对于java的学习,掌握基础的性价比要远远高于使用框架,而基础知识中对于网络相关知识的掌握也是重中之重.对于一个java程序来说,无论是工作中还是面试,对于Netty的掌握都是及其重要 ...

  9. java基础系列之ConcurrentHashMap源码分析(基于jdk1.8)

    1.前提 在阅读这篇博客之前,希望你对HashMap已经是有所理解的,否则可以参考这篇博客: jdk1.8源码分析-hashMap:另外你对java的cas操作也是有一定了解的,因为在这个类中大量使用 ...

随机推荐

  1. 理解vue-loader

    事情的起源是被人问到,一个以.vue结尾的文件,是如何被编译然后运行在浏览器中的?突然发现,对这一块模糊的很,而且看mpvue的文档,甚至小程序之类的都是实现了自己的loader,所以十分必要抽时间去 ...

  2. MDX查询SSAS结果--通过adomd.net展示到客户端

    SSAS多维模型建好之后,除了在excel客户端直接链接ssas源拖拽pivot分析使用外,还可以讲要展示的结果集通过MDX语句查询出来,嵌入到程序中,通过运行程序跑出完整的报表.如图所示:

  3. mysql -h139.129.205.80 -p test_db_dzpk < db.dump

    mysqldump -h139.129.205.80 -uroot -p db_a > db_dzpk.dump mysql -h139.129.205.80 -p test_db< db ...

  4. .netcore微服务-Mycat

      1.前言 1.1  分布式数据库 随着IT行业的迅猛发展,行业应用系统的数据规模呈现爆炸式增长,对数据库的数据处理能力要求越来越高,分布式数据库正是因此应运而生. 分布式数据库特点包括: 透明性: ...

  5. [leetcode] 87. Scramble String (Hard)

    题意: 判断两个字符串是否互为Scramble字符串,而互为Scramble字符串的定义: 字符串看作是父节点,从字符串某一处切开,生成的两个子串分别是父串的左右子树,再对切开生成的两个子串继续切开, ...

  6. [PTA] 1001. 害死人不偿命的(3n+1)猜想 (Basic)

    import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Sc ...

  7. 代码中批量执行Oracle SQL语句

    今天在写一个工具(winform),作用是批量的INSERT OR  UPDATE ORACLE数据库中的一个表. 执行的时候老是报错“[911] ORA-00911: invalid charact ...

  8. cocos creator 小游戏区域截图功能实现

    截图是游戏中非常常见的一个功能,在cocos中可以通过摄像机和 RenderTexture 可以快速实现一个截图功能,具体API可参考:https://docs.cocos.com/creator/m ...

  9. Node + js实现大文件分片上传基本原理及实践(一)

    _ 阅读目录 一:什么是分片上传? 二:理解Blob对象中的slice方法对文件进行分割及其他知识点 三. 使用 spark-md5 生成 md5文件 四. 使用koa+js实现大文件分片上传实践 回 ...

  10. 2015.11.27---Java

    public class star{ public static void main(String[] args) { System.out.print("ha"); } }