19/08/12 14:15:35 ERROR cluster.YarnScheduler: Lost executor 5 on worker01.hadoop.mobile.cn: Container killed by YARN for exceeding memory limits. 5 GB of 5 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.

在看这个问题之前,首先解释下下面参数的含义:

hadoop yarn-site.xml部分资源定义相关参数,更详细的内容可参考官网链接

yarn.nodemanager.resource.memory-mb //每个NodeManager可以供yarn调度(分配给container)的物理内存,单位MB
yarn.nodemanager.resource.cpu-vcores  //每个NodeManager可以供yarn调度(分配给container)的vcore个数

yarn.scheduler.maximum-allocation-mb //每个container能够申请到的最大内存
yarn.scheduler.minimum-allocation-mb //每个container能够申请到的最小内存,如果设置的值比该值小,默认就是该值
yarn.scheduler.increment-allocation-mb //container内存不够用时一次性加多少内存 单位MB。CDH默认512M
yarn.scheduler.minimum-allocation-vcores //每个container能够申请到的最小vcore个数,如果设置的值比该值小,默认就是该值
yarn.scheduler.maximum-allocation-vcores //每个container能够申请到的最大vcore个数。 

yarn.nodemanager.pmem-check-enabled //是否对contanier实施物理内存限制,会通过一个线程去监控container内存使用情况,超过了container的内存限制以后,就会被kill掉。
yarn.nodemanager.vmem-check-enabled //是否对container实施虚拟内存限制

  

executor-memory和executor-memory-overhead源码含义

EXECUTOR_MEMORY:
Amount of memory to use per executor process

EXECUTOR_MEMORY_OVERHEAD:
The amount of off-heap memory to be allocated per executor in cluster mode

spark.yarn.executor.memoryOverhead源代码实现:

  val MEMORY_OVERHEAD_FACTOR = 0.10
  val MEMORY_OVERHEAD_MIN = 384L
// Executor memory in MB.
protected val executorMemory = sparkConf.get(EXECUTOR_MEMORY).toInt
// Additional memory overhead.
protected val memoryOverhead: Int = sparkConf.get(EXECUTOR_MEMORY_OVERHEAD).getOrElse(
  math.max((MEMORY_OVERHEAD_FACTOR * executorMemory).toInt, MEMORY_OVERHEAD_MIN)).toInt

到这里,可能有的同学大概就明白了,比如设置了--executor-memory为2G,为什么报错时候是Container killed by YARN for exceeding memory limits. 2.5 GB of 2.5 GB physical memory used,2.5G从哪里来的?是这样,首先计算出memoryOverhead 默认值是max(2G*0.1,384),也就是384M,又根据上面的yarn.scheduler.increment-allocation-mb值,就会分配2G+512M大小的container...

好了,我们再看问题,从报错的描述上可以大概了解到,container超过了内存的限制从而被kill掉,从上面的参数yarn.nodemanager.pmem-check-enabled可以了解到该参数默认是true,也就是会由它来控制监控container的内存使用,所以第一步我们可以尝试关闭该参数看应用是否可以正常运行

调整一:设置yarn.nodemanager.pmem-check-enabled=false

结果:应用成功运行,但是关闭了对container内存的监控,虽然可以运行,但是明显没有实际性的处理问题,而且不可控的内存使用,对多租户的环境不友好

调整二:根据提示 Consider boosting spark.yarn.executor.memoryOverhead

但是什么是memoryOverhead呢? 如下图:

container内存使用情况的时线图:

尝试提升spark.yarn.executor.memoryOverhead参数值至1.5G,可以看到container预留了更多空间给 OS overhead,没有超过container的内存限制

不过很明显,我们是牺牲内存资源来换取应用稳定性。

但是真正的原因到底是什么呢?看下图:

每个任务都是通过NIO channel 去获取shuffle文件。并且所需的缓冲区是从OS overheads中分配的,这也就导致了os overhead越来越大,因此我们也可以通过减少并行度来减少同时运行的任务来尝试避免这样的问题。

调整三:降低参数--excutor-cores值

结果也可以成功运行,但是同样,我们是牺牲了应用的性能和cpu的利用率来换取应用稳定性。

最后,如果有同学单独调整以上参数应用仍然不可用的话,可以尝试上述多种方式同时使用,另外注意

  1.对于发生shuffle的算子,比如groupby,可以通过repartition提升并行度

  2.避免数据倾斜

Container killed by YARN for exceeding memory limits的更多相关文章

  1. Hive-Container killed by YARN for exceeding memory limits. 9.2 GB of 9 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.

    Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task times, most recen ...

  2. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)

    异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...

  4. spark运行任务报错:Container [...] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.

    spark版本:1.6.0 scala版本:2.10 报错日志: Application application_1562341921664_2123 failed 2 times due to AM ...

  5. [hadoop] - Container [xxxx] is running beyond physical/virtual memory limits.

    当运行mapreduce的时候,有时候会出现异常信息,提示物理内存或者虚拟内存超出限制,默认情况下:虚拟内存是物理内存的2.1倍.异常信息类似如下: Container [pid=13026,cont ...

  6. Container [pid=6263,containerID=container_1494900155967_0001_02_000001] is running beyond virtual memory limits

    以Spark-Client模式运行,Spark-Submit时出现了下面的错误: User: hadoop Name: Spark Pi Application Type: SPARK Applica ...

  7. hive: insert数据时Error during job, obtaining debugging information 以及beyond physical memory limits

    insert overwrite table canal_amt1...... 2014-10-09 10:40:27,368 Stage-1 map = 100%, reduce = 32%, Cu ...

  8. hadoop is running beyond virtual memory limits问题解决

    单机搭建了2.6.5的伪分布式集群,写了一个tf-idf计算程序,分词用的是结巴分词,使用standalone模式运行没有任何问题,切换到伪分布式模式运行一直报错: hadoop is running ...

  9. 运行hadoop的时候提示物理内存或虚拟内存溢出的解决方案running beyond physical memory或者beyond vitual memory limits

    当运行中出现Container is running beyond physical memory这个问题出现主要是因为物理内存不足导致的,在执行mapreduce的时候,每个map和reduce都有 ...

随机推荐

  1. 【NOIP2015】扫雷游戏-C++

    描述 扫雷游戏是一款十分经典的单机小游戏.在 n 行 m 列的雷区中有一些格子含有地雷 (称之为地雷格),其他格子不含地雷(称之为非地雷格).玩家翻开一个非地雷格时, 该格将会出现一个数字--提示周围 ...

  2. 码云及Git的使用

    什么是码云 码云就是相当一个远程仓库,在以后的工作中,你和同事负责工作的不同部分,齐头并进,最后上传到码云,类似于一个汇总的作用. 同一个绳上的不同分支 码云网址链接:https://gitee.co ...

  3. SpringBoot Jpa入门案例

    版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons) 我们先来了解一下是什么是springboot jpa,springboo ...

  4. CentOS 7.3 安装python3

    1.排查 CentOS 7.3 默认安装的是python2,使用命令 python -V 可以看到 python 的版本 Python 2.7.5 然后使用命令 which python 查看一下Py ...

  5. Java-面向对象oop

    在提到面向对象的时候,大多数的书上面介绍的是简短的 类是对象的集合,对象是类的实例化.这样笼统的说法的确可以概括面向对象的思想,但却不能让一个刚入门的人理解到面向对象. 在这里先介绍一下类,当你在Ja ...

  6. FJNUOJ 1002 画葫芦。。

    画图就是..找..规..律 #include <iostream>using namespace std;int main(){ int T; cin>>T; while(T- ...

  7. WSASocket()创建套接字不成功解决方法

    这几天我在写一个模仿windows自带的ping程序,可是套接字总是创建不成功,在网上找了一些资料最后总算把问题解决了,现在总结一下. 解决方法:以管理员运行VS就行了我的是vs2013,vs2010 ...

  8. 解读equals()和hashCode()

    前面部分摘自:https://blog.csdn.net/javazejian/article/details/51348320 一:Object中equals方法的实现原理 public boole ...

  9. TestNG中DataProvider的用法一

    目录 为什么要使用DataProvider DataProvider的常规用法 带Method参数的DataProvider 带ITestContext的DataProvider DataProvid ...

  10. 2019最新idea注册码

    2019最新注册码到2020年1月7号 N757JE0KCT-eyJsaWNlbnNlSWQiOiJONzU3SkUwS0NUIiwibGljZW5zZWVOYW1lIjoid3UgYW5qdW4iL ...