How to Compute The Derivatives (如何求导数)(TBC)
A video by 3Blue1Brown in Bilibili\text{A video by 3Blue1Brown in Bilibili}A video by 3Blue1Brown in Bilibili
I don’t have a systematic face to Derivatives before, but now I do.\text{I don't have a systematic face to Derivatives before, but now I do.}I don’t have a systematic face to Derivatives before, but now I do.
The Derivative of a function is a function which equals to the slope of that\text{The Derivative of a function is a function which equals to the slope of that}The Derivative of a function is a function which equals to the slope of thatfunction’s graph.\text{function's graph.}function’s graph.
1. The Derivative of Power Functions\text{1. The Derivative of Power Functions}1. The Derivative of Power Functions
Let’s look at some simples.\text{Let's look at some simples.}Let’s look at some simples.
We can treat y=x2 to a square with side length x.\text{We can treat }y=x^2\text{ to a square with side length }x.We can treat y=x2 to a square with side length x.
Let the side length becomes to (x+dx) so that the area increases (2x⋅dx+dx2).\text{Let the side length becomes to }(x+dx)\text{ so that the area increases }(2x·dx+dx^2).Let the side length becomes to (x+dx) so that the area increases (2x⋅dx+dx2).
Because of the increment dx should be much smaller than x, so it’s safe to ignore the\text{Because of the increment }dx\text{ should be much smaller than }x,\text{ so it's safe to ignore the}Because of the increment dx should be much smaller than x, so it’s safe to ignore theterms those have dx2 or high power of dx.\text{terms those have }dx^2\text{ or high power of }dx.terms those have dx2 or high power of dx.
Therefore, ΔS=2x⋅dx. When dx→0,ΔS→2x.\text{Therefore, }\Delta S=2x·dx.\text{ When }dx\rightarrow0,\Delta S\rightarrow 2x.Therefore, ΔS=2x⋅dx. When dx→0,ΔS→2x.
And the same, consider the function y=x3.\text{And the same, consider the function }y=x^3.And the same, consider the function y=x3.
We can treat it to a cube with a side length x.\text{We can treat it to a cube with a side length }x.We can treat it to a cube with a side length x.
Let the side length becomes to (x+dx) so that the volume increases (3x2⋅dx+3x⋅dx2+dx3).\text{Let the side length becomes to }(x+dx)\text{ so that the volume increases }(3x^2·dx+3x·dx^2+dx^3).Let the side length becomes to (x+dx) so that the volume increases (3x2⋅dx+3x⋅dx2+dx3).
As the same, we also let it be 3x2.\text{As the same, we also let it be }3x^2.As the same, we also let it be 3x2.
Actually, for a power function f(x)=xn, it goes\text{Actually, for a power function }f(x)=x^n,\text{ it goes}Actually, for a power function f(x)=xn, it goes
f(x)=xnf(x+dx)=(x+dx)n=xn+nxn−1dx+...f′=Δf=f(x+dx)−f(x)=nxn−1\begin{aligned}f(x)&=x^n\\\\
f(x+dx)&=(x+dx)^n\\
&=x^n+nx^{n-1}dx+...\\\\
f'=\Delta f&=f(x+dx)-f(x)\\
&=nx^{n-1}\end{aligned}f(x)f(x+dx)f′=Δf=xn=(x+dx)n=xn+nxn−1dx+...=f(x+dx)−f(x)=nxn−1
Therefore, its dericatives f′=nxn−1.\text{Therefore, its dericatives }f'=nx^{n-1}.Therefore, its dericatives f′=nxn−1.
To be continued.\text{To be continued.}To be continued.
How to Compute The Derivatives (如何求导数)(TBC)的更多相关文章
- matlab求导数
clc; %清屏 clear; %清除变量 close all; %关闭 syms x; %定义变量,多个变量间用空格分离 f(x) = x^3; %原函数 res = diff(f(x),x,1); ...
- 关于 Softmax 回归的反向传播求导数过程
对于 \(Softmax\) 回归的正向传播非常简单,就是对于一个输入 \(X\) 对每一个输入标量 \(x_i\) 进行加权求和得到 \(Z\) 然后对其做概率归一化. Softmax 示意图 下面 ...
- BUPT复试专题—求导数(2015)
题目描述 描述:求函数f(x) = a*x^3 + b*x^2 + c*x + d在x = x0处的一阶导数. 输入 数据第一行是数据的组数m 接下来m行的每一行分别是 a b c d x0 输出 ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [zt]矩阵求导公式
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --&g ...
- 转:DataTable的Compute方法的应用
转自:http://www.cnblogs.com/hfliyi/archive/2013/01/08/2851944.html 项目中遇到计算平均值.标准偏差.平均值+标准偏差.平均值+2倍标准偏差 ...
- [转]DataTable用中使用Compute 实现简单的DataTable数据的统计
本文转自:http://blog.csdn.net/zwxrain/article/details/252285 調用格式: object DataTable.Compute(string expre ...
- R语言的导数计算(转)
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽 ...
- 矩阵的f范数及其求偏导法则
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
随机推荐
- eclipse查看.class文件
要使用jd-gui.exe反编译程序 步骤:window-preferences-general-editors-file associations, 如下图 上面的框选中,*.class witho ...
- 基于python的selenium两种文件上传操作
方法一.input标签上传 如果是input标签,可以直接输入路径,那么可以直接调用send_keys输入路径,这里不做过多赘述,前文有相关操作方法. 方法二.非input标签上传 这种上传方 ...
- Metasploit工具----漏洞利用模块
漏洞利用是指由渗透测试者利用一个系统.应用或者服务中的安全漏洞进行的攻击行为.流行的渗透攻击技术包括缓冲区溢出.Web应用程序攻击,以及利用配置错误等,其中包含攻击者或测试人员针对系统中的漏洞而设计的 ...
- Day 21 进程管理
1.什么是进程 比如: 开发写的代码我们称为程序,那么将开发的代码运行起来.我们称为进程. 总结一句话就是: 当我们运行一个程序,那么我们将运行的程序叫进程. PS1: 当程序运行为进程后,系统会为该 ...
- SpringBoot区块链之以太坊区块高度扫描(简洁版)
继续昨天的demo往下写写:[SpringBoot区块链之以太坊开发(整合Web3j)](https://juejin.im/post/5d88e6c1518825094f69e887),将复杂的逻辑 ...
- Go微服务容错与韧性(Service Resilience)
Service Resilience是指当服务的的运行环境出现了问题,例如网络故障或服务过载或某些微服务宕机的情况下,程序仍能够提供部分或大部分服务,这时我们就说服务的韧性很强.它是微服务中很重要的一 ...
- html常见的块元素与内联(行内)元素用法说明(一)
html平时常见的块元素有:div, p, h1, h2, h3等,内联元素有:span, a, img等. 块元素的属性:无论内容是什么,都会独占一整行.主要用于页面布局. 内联元素的属性:只占自身 ...
- Tomcat 报错 The APR based Apache Tomcat Native library which allows optimal performance in production environmen
这个问题在我一次重新装了tomcat和myeclipse时出现 说实话 出现这个问题头大 但是好在解决了 美滋滋 最开始到处寻找各种解决方案 最后直接注释了server.xml中的一行 直接解决这个报 ...
- java-toString()、(String)、String.valueOf 的区别
Object x = new Integer(1218); System.out.println((String)x); 如上代码编译通过,运行时报错: java.lang.ClassCastExce ...
- freemarker模版引擎技术总结
FreeMarker语言概述 FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写. FreeMarker被设计用来生成HTML Web页面,特别是基于MVC模式 ...