一、HBase过滤器简介

Hbase 提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predicate push down)。这样可以保证过滤掉的数据不会被传送到客户端,从而减轻网络传输和客户端处理的压力。

二、过滤器基础

2.1 Filter接口和FilterBase抽象类

Filter 接口中定义了过滤器的基本方法,FilterBase 抽象类实现了 Filter 接口。所有内置的过滤器则直接或者间接继承自 FilterBase 抽象类。用户只需要将定义好的过滤器通过 setFilter 方法传递给 Scanput 的实例即可。

setFilter(Filter filter)
 // Scan 中定义的 setFilter
 @Override
  public Scan setFilter(Filter filter) {
    super.setFilter(filter);
    return this;
  }
  // Get 中定义的 setFilter
 @Override
  public Get setFilter(Filter filter) {
    super.setFilter(filter);
    return this;
  }

FilterBase 的所有子类过滤器如下:

说明:上图基于当前时间点(2019.4)最新的 Hbase-2.1.4 ,下文所有说明均基于此版本。

2.2 过滤器分类

HBase 内置过滤器可以分为三类:分别是比较过滤器,专用过滤器和包装过滤器。分别在下面的三个小节中做详细的介绍。

三、比较过滤器

所有比较过滤器均继承自 CompareFilter。创建一个比较过滤器需要两个参数,分别是比较运算符比较器实例

 public CompareFilter(final CompareOp compareOp,final ByteArrayComparable comparator) {
    this.compareOp = compareOp;
    this.comparator = comparator;
  }

3.1 比较运算符

  • LESS (<)
  • LESS_OR_EQUAL (<=)
  • EQUAL (=)
  • NOT_EQUAL (!=)
  • GREATER_OR_EQUAL (>=)
  • GREATER (>)
  • NO_OP (排除所有符合条件的值)

比较运算符均定义在枚举类 CompareOperator

@InterfaceAudience.Public
public enum CompareOperator {
  LESS,
  LESS_OR_EQUAL,
  EQUAL,
  NOT_EQUAL,
  GREATER_OR_EQUAL,
  GREATER,
  NO_OP,
}

注意:在 1.x 版本的 HBase 中,比较运算符定义在 CompareFilter.CompareOp 枚举类中,但在 2.0 之后这个类就被标识为 @deprecated ,并会在 3.0 移除。所以 2.0 之后版本的 HBase 需要使用 CompareOperator 这个枚举类。

3.2 比较器

所有比较器均继承自 ByteArrayComparable 抽象类,常用的有以下几种:

  • BinaryComparator : 使用 Bytes.compareTo(byte [],byte []) 按字典序比较指定的字节数组。
  • BinaryPrefixComparator : 按字典序与指定的字节数组进行比较,但只比较到这个字节数组的长度。
  • RegexStringComparator : 使用给定的正则表达式与指定的字节数组进行比较。仅支持 EQUALNOT_EQUAL 操作。
  • SubStringComparator : 测试给定的子字符串是否出现在指定的字节数组中,比较不区分大小写。仅支持 EQUALNOT_EQUAL 操作。
  • NullComparator :判断给定的值是否为空。
  • BitComparator :按位进行比较。

BinaryPrefixComparatorBinaryComparator 的区别不是很好理解,这里举例说明一下:

在进行 EQUAL 的比较时,如果比较器传入的是 abcd 的字节数组,但是待比较数据是 abcdefgh

  • 如果使用的是 BinaryPrefixComparator 比较器,则比较以 abcd 字节数组的长度为准,即 efgh 不会参与比较,这时候认为 abcdabcdefgh 是满足 EQUAL 条件的;
  • 如果使用的是 BinaryComparator 比较器,则认为其是不相等的。

3.3 比较过滤器种类

比较过滤器共有五个(Hbase 1.x 版本和 2.x 版本相同),见下图:

  • RowFilter :基于行键来过滤数据;
  • FamilyFilterr :基于列族来过滤数据;
  • QualifierFilterr :基于列限定符(列名)来过滤数据;
  • ValueFilterr :基于单元格 (cell) 的值来过滤数据;
  • DependentColumnFilter :指定一个参考列来过滤其他列的过滤器,过滤的原则是基于参考列的时间戳来进行筛选 。

前四种过滤器的使用方法相同,均只要传递比较运算符和运算器实例即可构建,然后通过 setFilter 方法传递给 scan

 Filter filter  = new RowFilter(CompareOperator.LESS_OR_EQUAL,
                                new BinaryComparator(Bytes.toBytes("xxx")));
  scan.setFilter(filter);    

DependentColumnFilter 的使用稍微复杂一点,这里单独做下说明。

3.4 DependentColumnFilter

可以把 DependentColumnFilter 理解为一个 valueFilter 和一个时间戳过滤器的组合DependentColumnFilter 有三个带参构造器,这里选择一个参数最全的进行说明:

DependentColumnFilter(final byte [] family, final byte[] qualifier,
                               final boolean dropDependentColumn, final CompareOperator op,
                               final ByteArrayComparable valueComparator)
  • family :列族
  • qualifier :列限定符(列名)
  • dropDependentColumn :决定参考列是否被包含在返回结果内,为 true 时表示参考列被返回,为 false 时表示被丢弃
  • op :比较运算符
  • valueComparator :比较器

这里举例进行说明:

DependentColumnFilter dependentColumnFilter = new DependentColumnFilter(
    Bytes.toBytes("student"),
    Bytes.toBytes("name"),
    false,
    CompareOperator.EQUAL,
    new BinaryPrefixComparator(Bytes.toBytes("xiaolan")));
  • 首先会去查找 student:name 中值以 xiaolan 开头的所有数据获得 参考数据集,这一步等同于 valueFilter 过滤器;

  • 其次再用参考数据集中所有数据的时间戳去检索其他列,获得时间戳相同的其他列的数据作为 结果数据集,这一步等同于时间戳过滤器;

  • 最后如果 dropDependentColumn 为 true,则返回 参考数据集+结果数据集,若为 false,则抛弃参考数据集,只返回 结果数据集

四、专用过滤器

专用过滤器通常直接继承自 FilterBase,适用于范围更小的筛选规则。

4.1 单列列值过滤器 (SingleColumnValueFilter)

基于某列(参考列)的值决定某行数据是否被过滤。其实例有以下方法:

  • setFilterIfMissing(boolean filterIfMissing) :默认值为 false,即如果该行数据不包含参考列,其依然被包含在最后的结果中;设置为 true 时,则不包含;
  • setLatestVersionOnly(boolean latestVersionOnly) :默认为 true,即只检索参考列的最新版本数据;设置为 false,则检索所有版本数据。
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
                "student".getBytes(),
                "name".getBytes(),
                CompareOperator.EQUAL,
                new SubstringComparator("xiaolan"));
singleColumnValueFilter.setFilterIfMissing(true);
scan.setFilter(singleColumnValueFilter);

4.2 单列列值排除器 (SingleColumnValueExcludeFilter)

SingleColumnValueExcludeFilter 继承自上面的 SingleColumnValueFilter,过滤行为与其相反。

4.3 行键前缀过滤器 (PrefixFilter)

基于 RowKey 值决定某行数据是否被过滤。

PrefixFilter prefixFilter = new PrefixFilter(Bytes.toBytes("xxx"));
scan.setFilter(prefixFilter);

4.4 列名前缀过滤器 (ColumnPrefixFilter)

基于列限定符(列名)决定某行数据是否被过滤。

ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter(Bytes.toBytes("xxx"));
 scan.setFilter(columnPrefixFilter);

4.5 分页过滤器 (PageFilter)

可以使用这个过滤器实现对结果按行进行分页,创建 PageFilter 实例的时候需要传入每页的行数。

public PageFilter(final long pageSize) {
    Preconditions.checkArgument(pageSize >= 0, "must be positive %s", pageSize);
    this.pageSize = pageSize;
  }

下面的代码体现了客户端实现分页查询的主要逻辑,这里对其进行一下解释说明:

客户端进行分页查询,需要传递 startRow(起始 RowKey),知道起始 startRow 后,就可以返回对应的 pageSize 行数据。这里唯一的问题就是,对于第一次查询,显然 startRow 就是表格的第一行数据,但是之后第二次、第三次查询我们并不知道 startRow,只能知道上一次查询的最后一条数据的 RowKey(简单称之为 lastRow)。

我们不能将 lastRow 作为新一次查询的 startRow 传入,因为 scan 的查询区间是[startRow,endRow) ,即前开后闭区间,这样 startRow 在新的查询也会被返回,这条数据就重复了。

同时在不使用第三方数据库存储 RowKey 的情况下,我们是无法通过知道 lastRow 的下一个 RowKey 的,因为 RowKey 的设计可能是连续的也有可能是不连续的。

由于 Hbase 的 RowKey 是按照字典序进行排序的。这种情况下,就可以在 lastRow 后面加上 0 ,作为 startRow 传入,因为按照字典序的规则,某个值加上 0 后的新值,在字典序上一定是这个值的下一个值,对于 HBase 来说下一个 RowKey 在字典序上一定也是等于或者大于这个新值的。

所以最后传入 lastRow+0,如果等于这个值的 RowKey 存在就从这个值开始 scan,否则从字典序的下一个 RowKey 开始 scan。

25 个字母以及数字字符,字典排序如下:

'0' < '1' < '2' < ... < '9' < 'a' < 'b' < ... < 'z'

分页查询主要实现逻辑:

byte[] POSTFIX = new byte[] { 0x00 };
Filter filter = new PageFilter(15);

int totalRows = 0;
byte[] lastRow = null;
while (true) {
    Scan scan = new Scan();
    scan.setFilter(filter);
    if (lastRow != null) {
        // 如果不是首行 则 lastRow + 0
        byte[] startRow = Bytes.add(lastRow, POSTFIX);
        System.out.println("start row: " +
                           Bytes.toStringBinary(startRow));
        scan.withStartRow(startRow);
    }
    ResultScanner scanner = table.getScanner(scan);
    int localRows = 0;
    Result result;
    while ((result = scanner.next()) != null) {
        System.out.println(localRows++ + ": " + result);
        totalRows++;
        lastRow = result.getRow();
    }
    scanner.close();
    //最后一页,查询结束
    if (localRows == 0) break;
}
System.out.println("total rows: " + totalRows);

需要注意的是在多台 Regin Services 上执行分页过滤的时候,由于并行执行的过滤器不能共享它们的状态和边界,所以有可能每个过滤器都会在完成扫描前获取了 PageCount 行的结果,这种情况下会返回比分页条数更多的数据,分页过滤器就有失效的可能。

4.6 时间戳过滤器 (TimestampsFilter)

List<Long> list = new ArrayList<>();
list.add(1554975573000L);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);

4.7 首次行键过滤器 (FirstKeyOnlyFilter)

FirstKeyOnlyFilter 只扫描每行的第一列,扫描完第一列后就结束对当前行的扫描,并跳转到下一行。相比于全表扫描,其性能更好,通常用于行数统计的场景,因为如果某一行存在,则行中必然至少有一列。

FirstKeyOnlyFilter firstKeyOnlyFilter = new FirstKeyOnlyFilter();
scan.set(firstKeyOnlyFilter);

五、包装过滤器

包装过滤器就是通过包装其他过滤器以实现某些拓展的功能。

5.1 SkipFilter过滤器

SkipFilter 包装一个过滤器,当被包装的过滤器遇到一个需要过滤的 KeyValue 实例时,则拓展过滤整行数据。下面是一个使用示例:

// 定义 ValueFilter 过滤器
Filter filter1 = new ValueFilter(CompareOperator.NOT_EQUAL,
      new BinaryComparator(Bytes.toBytes("xxx")));
// 使用 SkipFilter 进行包装
Filter filter2 = new SkipFilter(filter1);

5.2 WhileMatchFilter过滤器

WhileMatchFilter 包装一个过滤器,当被包装的过滤器遇到一个需要过滤的 KeyValue 实例时,WhileMatchFilter 则结束本次扫描,返回已经扫描到的结果。下面是其使用示例:

Filter filter1 = new RowFilter(CompareOperator.NOT_EQUAL,
                               new BinaryComparator(Bytes.toBytes("rowKey4")));

Scan scan = new Scan();
scan.setFilter(filter1);
ResultScanner scanner1 = table.getScanner(scan);
for (Result result : scanner1) {
    for (Cell cell : result.listCells()) {
        System.out.println(cell);
    }
}
scanner1.close();

System.out.println("--------------------");

// 使用 WhileMatchFilter 进行包装
Filter filter2 = new WhileMatchFilter(filter1);

scan.setFilter(filter2);
ResultScanner scanner2 = table.getScanner(scan);
for (Result result : scanner1) {
    for (Cell cell : result.listCells()) {
        System.out.println(cell);
    }
}
scanner2.close();
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0
rowKey5/student:name/1555035007051/Put/vlen=8/seqid=0
rowKey6/student:name/1555035007057/Put/vlen=8/seqid=0
rowKey7/student:name/1555035007062/Put/vlen=8/seqid=0
rowKey8/student:name/1555035007068/Put/vlen=8/seqid=0
rowKey9/student:name/1555035007073/Put/vlen=8/seqid=0
--------------------
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0

可以看到被包装后,只返回了 rowKey4 之前的数据。

六、FilterList

以上都是讲解单个过滤器的作用,当需要多个过滤器共同作用于一次查询的时候,就需要使用 FilterListFilterList 支持通过构造器或者 addFilter 方法传入多个过滤器。

// 构造器传入
public FilterList(final Operator operator, final List<Filter> filters)
public FilterList(final List<Filter> filters)
public FilterList(final Filter... filters)

// 方法传入
 public void addFilter(List<Filter> filters)
 public void addFilter(Filter filter)

多个过滤器组合的结果由 operator 参数定义 ,其可选参数定义在 Operator 枚举类中。只有 MUST_PASS_ALLMUST_PASS_ONE 两个可选的值:

  • MUST_PASS_ALL :相当于 AND,必须所有的过滤器都通过才认为通过;
  • MUST_PASS_ONE :相当于 OR,只有要一个过滤器通过则认为通过。
@InterfaceAudience.Public
  public enum Operator {
    /** !AND */
    MUST_PASS_ALL,
    /** !OR */
    MUST_PASS_ONE
  }

使用示例如下:

List<Filter> filters = new ArrayList<Filter>();

Filter filter1 = new RowFilter(CompareOperator.GREATER_OR_EQUAL,
                               new BinaryComparator(Bytes.toBytes("XXX")));
filters.add(filter1);

Filter filter2 = new RowFilter(CompareOperator.LESS_OR_EQUAL,
                               new BinaryComparator(Bytes.toBytes("YYY")));
filters.add(filter2);

Filter filter3 = new QualifierFilter(CompareOperator.EQUAL,
                                     new RegexStringComparator("ZZZ"));
filters.add(filter3);

FilterList filterList = new FilterList(filters);

Scan scan = new Scan();
scan.setFilter(filterList);

参考资料

HBase: The Definitive Guide _> Chapter 4. Client API: Advanced Features

更多大数据系列文章可以参见 GitHub 开源项目大数据入门指南

HBase 系列(七)——HBase 过滤器详解的更多相关文章

  1. ASP.NET MVC深入浅出系列(持续更新) ORM系列之Entity FrameWork详解(持续更新) 第十六节:语法总结(3)(C#6.0和C#7.0新语法) 第三节:深度剖析各类数据结构(Array、List、Queue、Stack)及线程安全问题和yeild关键字 各种通讯连接方式 设计模式篇 第十二节: 总结Quartz.Net几种部署模式(IIS、Exe、服务部署【借

    ASP.NET MVC深入浅出系列(持续更新)   一. ASP.NET体系 从事.Net开发以来,最先接触的Web开发框架是Asp.Net WebForm,该框架高度封装,为了隐藏Http的无状态模 ...

  2. MVC过滤器详解

    MVC过滤器详解   APS.NET MVC中(以下简称"MVC")的每一个请求,都会分配给相应的控制器和对应的行为方法去处理,而在这些处理的前前后后如果想再加一些额外的逻辑处理. ...

  3. Asp.Net MVC学习总结之过滤器详解(转载)

    来源:http://www.php.cn/csharp-article-359736.html   一.过滤器简介 1.1.理解什么是过滤器 1.过滤器(Filters)就是向请求处理管道中注入额外的 ...

  4. ISO七层模型详解

    ISO七层模型详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在我刚刚接触运维这个行业的时候,去面试时总是会做一些面试题,笔试题就是看一个运维工程师的专业技能的掌握情况,这个很 ...

  5. Hexo系列(三) 常用命令详解

    Hexo 框架可以帮助我们快速创建一个属于自己的博客网站,熟悉 Hexo 框架提供的命令有利于我们管理博客 1.hexo init hexo init 命令用于初始化本地文件夹为网站的根目录 $ he ...

  6. UWP入门(七)--SplitView详解与页面跳转

    原文:UWP入门(七)--SplitView详解与页面跳转 官方文档,逼着自己用英文看,UWP开发离不开官方文档 1. SplitView 拆分视图控件 拆分视图控件具有一个可展开/可折叠的窗格和一个 ...

  7. Wireshark过滤器详解

    Wireshark过滤器详解 1.Wireshark主要提供两种主要的过滤器 捕获过滤器:当进行数据包捕获时,只有那些满足给定的包含/排除表达式的数据包会被捕获 显示过滤器:该过滤器根据指定的表达式用 ...

  8. Apache版本的Hadoop HA集群启动详细步骤【包括Zookeeper、HDFS HA、YARN HA、HBase HA】(图文详解)

    不多说,直接上干货! 1.先每台机器的zookeeper启动(bigdata-pro01.kfk.com.bigdata-pro02.kfk.com.bigdata-pro03.kfk.com) 2. ...

  9. hbase实践之数据读取详解

    hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...

  10. HBase Filter 过滤器之RowFilter详解

    前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...

随机推荐

  1. springboot项目快速构建

    1. 问题描述 springboot的面世,成为Java开发者的一大福音,大大提升了开发的效率,其实springboot只是在maven的基础上,对已有的maven gav进行了封装而已,今天用最简单 ...

  2. 《ElasticSearch6.x实战教程》之复杂搜索、Java客户端(下)

    第八章-复杂搜索 黑夜给了我黑色的眼睛,我却用它寻找光明. 经过了解简单的API和简单搜索,已经基本上能应付大部分的使用场景.可是非关系型数据库数据的文档数据往往又多又杂,各种各样冗余的字段,组成了一 ...

  3. 【译】宣告推出.NET Core 3.0 Preview 7(英雄的黎明)

    今天,我们宣布推出.NET Core 3.0 Preview 7.我们已经从创建新特性阶段过渡到了完善版本阶段.对于其余的预览版,我们将把重点放在质量(改进)上. 在Windows,macOS和Lin ...

  4. php框架内的数据库操作(微擎,tp,yii2)

    微擎数据库操作 关键字 查询 pdo_get pdo_getcolumn pdo_getall pdo_getslice pdo_fetchcolumn pdo_fetchall 示例: array ...

  5. 用 | 和 & 简化查询

    利用"|"和"&"简化查询 1.多个字段相同查询条件下用"&"处理 例如该情况: $model = M('Test'); $ ...

  6. 基于SDN网络的负载均衡研究与实现

    为什么需要软件定义网络 1.网络缺乏可扩展性,创新正在停滞不前.   我们最新的研究发现,几乎每两个组织中就有一个认为需要将网络功能扩展为采用SDN的主要业务触发因素,而不是其他催化剂.这一统计数据一 ...

  7. 【Intellij】Hot Swap Failed & class reloaded

    用 Intellij IDEA 编译程序时遇到了这个问题,如下图所示: 对结果貌似没什么影响,但暂时没找到出现这个情况的原因……

  8. MemCached的telnet命令行参数

    1.启动Memcache 常用参数 -p <num>      设置TCP端口号(默认不设置为: 11211) -U <num>      UDP监听端口(默认: 11211, ...

  9. S2:c#继承

    在C#中,如果一个类后面通过冒号又跟了另外一个类,那么我们就称冒号前面的类为子类,冒号后面的类为父类.这种书写类的方式放映出来的关系就称为类的继承关系. 1.子类:派生类 父类:基类或者超类 满足is ...

  10. kubernetes集群升级的正确姿势

    kubernetes社区非常活跃,每季度都会发布一个release.但是线上集群业务可用性要求较高,场景复杂,任何微小的变更都需要非常小心,此时跟随社区版本进行升级略显吃力.但是为了能够使用到最新的一 ...