前言
当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。
 
 
准备工作
为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。
  • 表名:order_history
  • 描述:某个业务的订单历史表
  • 主要字段:unsigned int id,tinyint(4) int type
  • 字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
  • 数据量:5709294
  • MySQL版本:5.7.16
线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。
以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:
select count(*) from orders_history;
返回结果:5709294
三次查询时间分别为:
8903 ms8323 ms8401 ms
一般分页查询
一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:
  • 第一个参数指定第一个返回记录行的偏移量
  • 第二个参数指定返回记录行的最大数目
  • 如果只给定一个参数:它表示返回最大的记录行数目
  • 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
  • 初始记录行的偏移量是 0(而不是 1)
下面是一个应用实例:
select * from orders_history where type=8 limit 1000,10;
该条语句将会从表 orders_history 中查询第1000条数据之后的10条数据,也就是第1001条到第10010条数据。
数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:
select * from orders_history where type=8 order by id limit 10000,10;
三次查询时间分别为:
3040 ms3063 ms3018 ms
针对这种查询方式,下面测试查询记录量对时间的影响:
select * from orders_history where type=8 limit 10000,1; select * from orders_history where type=8 limit 10000,10; select * from orders_history where type=8 limit 10000,100; select * from orders_history where type=8 limit 10000,1000; select * from orders_history where type=8 limit 10000,10000;
三次查询时间如下:
查询1条记录:3072ms 3092ms 3002ms查询10条记录:3081ms 3077ms 3032ms查询100条记录:3118ms 3200ms 3128ms查询1000条记录:3412ms 3468ms 3394ms查询10000条记录:3749ms 3802ms 3696ms
另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。
针对查询偏移量的测试:
select * from orders_history where type=8 limit 100,100; select * from orders_history where type=8 limit 1000,100; select * from orders_history where type=8 limit 10000,100; select * from orders_history where type=8 limit 100000,100; select * from orders_history where type=8 limit 1000000,100;
三次查询时间如下:
查询100偏移:25ms 24ms 24ms查询1000偏移:78ms 76ms 77ms查询10000偏移:3092ms 3212ms 3128ms查询100000偏移:3878ms 3812ms 3798ms查询1000000偏移:14608ms 14062ms 14700ms
随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。
这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。
 
 
 
使用子查询优化
这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。
select * from orders_history where type=8 limit 100000,1; select id from orders_history where type=8 limit 100000,1; select * from orders_history where type=8 and id>=(select id from orders_history where type=8 limit 100000,1) limit 100; select * from orders_history where type=8 limit 100000,100;
4条语句的查询时间如下:
第1条语句:3674ms第2条语句:1315ms第3条语句:1327ms第4条语句:3710ms
针对上面的查询需要注意:
  • 比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
  • 比较第2条语句和第3条语句:速度相差几十毫秒
  • 比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍
这种方式相较于原始一般的查询方法,将会增快数倍。
使用 id 限定优化
这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:
select * from orders_history where type=2 and id between 1000000 and 1000100 limit 100;
查询时间:15ms 12ms 9ms
这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。
还可以有另外一种写法:
select * from orders_history where id >= 1000001 limit 100;
当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:
select * from orders_history where id in (select order_id from trade_2 where goods = 'pen') limit 100;
这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。
 
 
 
使用临时表优化
这种方式已经不属于查询优化,这儿附带提一下。
对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。
关于数据表的id说明
一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。
如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。
使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 select id,然后再 select *;
 

4种MySQL分页查询优化的方法,你知道几个?的更多相关文章

  1. 8种MySQL分页方法总结

    这篇文章主要介绍了8种MySQL分页方法总结,小编现在才知道,MySQL分页竟然有8种实现方法,本文就一一讲解了这些方法,需要的朋友可以参考下 MySQL的分页似乎一直是个问题,有什么优化方法吗?网上 ...

  2. 【转】30种MySQL索引优化的方法

    第一方面:30种mysql优化sql语句查询的方法       1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by涉及的列上建立索引. 2.应尽量避免在 where ...

  3. 复盘MySQL分页查询优化方案

    一.前言 MySQL分页查询作为Java面试的一道高频面试题,这里有必要实践一下,毕竟实践出真知. 很多同学在做测试时苦于没有海量数据,官方其实是有一套测试库的. 二.模拟数据 这里模拟数据分2种情况 ...

  4. mysql分页查询优化(索引延迟关联)

    对于web后台报表导出是一种常见的功能点,实际对应服务后端即数据库的排序分页查询.如下示例为公司商户积分报表导出其中一个sql ,当大批量的导出请求进入时候,mysql的cpu急剧上升瞬间有拖垮库的风 ...

  5. MySQL 分页查询优化——延迟关联优化

    目录 1.   InnoDB表的索引的几个概念 2.   覆盖索引和回表 3.   分页查询 4.   延迟关联优化 写在前面 下面的介绍均是在选用MySQL数据库和Innodb引擎的基础开展.我们先 ...

  6. mysql分页查询优化

    由于MySql的分页机制:并不是跳过 offset 行,而是取 offset + N 行,然后返回放弃前 offset 行,返回N 行, 所以当 offset 特别大的时候,效率就非常的低下,要么控制 ...

  7. C# MVC的一种高效分页的html方法

    首先创建一个html的扩展方法,这个方法是万能的,可以直接拿到您的项目中使用: //主要就是输出分页的超级链接的标签 //自定义分页Helper扩展 public static HtmlString ...

  8. MySQL 分页查询优化

    有时在处理偏移量非常大的分页时候查询时,例如LIMIT 1000,10这样的查询,这时MySQL需要查询1010条记录然后只返回最后10条,前面1000条记录都被抛弃,这样的代价非常高.要优化这种查询 ...

  9. 跟踪MYSQL 的查询优化过程方法

    http://dev.mysql.com/doc/internals/en/tracing-example.html http://blog.chinaunix.net/uid-20785090-id ...

随机推荐

  1. react一写工具

    动画库:React-transition-group ui框架:Ant Design

  2. ubuntu 16.04源码编译OpenCV教程 | compile opencv on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/15f5c3e8/,欢迎阅读! compile opencv on ubuntu 16.04 Series Part 1: comp ...

  3. vue—自定义指令

    今日分享—自定义指令 需要学习的点: modifiers属性的具体实例就是v-on:click.stop=”handClick” 一样,为指令添加一个修饰符. 全局指令:新建一个newDir.js i ...

  4. H3C交换机console登录配置 v7

    一.通过con口只需输入password登陆交换机. [H3C]user-interface aux 0 设置认证方式为密码验证方式 [H3C-ui-aux0] authentication-mode ...

  5. Lab4\5:进程和线程

    进程的定义 进程是指一个具有一定独立功能的程序在一个数据集合上的一次动态执行过程 源代码在经过编译链接之后生成了可执行文件,再由操作系统进行加载并且进行一些堆栈的分配才是进程 进程控制块 操作系统管理 ...

  6. centos6.7下安装glibc-2.17

    glibc  所有版本下载地址 : http://ftp.gnu.org/pub/gnu/glibc/ 安装先决条件: #yum install gcc libffi-devel python-dev ...

  7. AWS re:Invent 2019 召开 | 云原生生态周报 Vol. 30

    作者 | 何淋波.宋净超.徐迪 业界要闻 1. AWS re:Invent 2019 AWS 年度云计算盛会于 12.2-12.6 在拉斯维加斯举行. 技术分享超过 2500 场,技术方向涵盖数据分析 ...

  8. petri 网理论与研究(第一节140915)

    成绩 :70 大作业 和 30 的最后讨论 petri 是一个人的名字. 网状结构的信息流模型,和自动机有点像 理论体系发展比较慢  应用很远 1      EN,P/T,Pr/T,CPN,关系网……

  9. vsftpd cmds_allowed 权限控制

    vsftpd cmds_allowed cmds_allowed=ABOR,CWD,LIST,MDTM,MKD,NLST, PASS,PASV,PORT,PWD,QUIT,RETR,RMD,RNFR, ...

  10. map.entrySet().iterator()

    1.首先创建一个HashMap, Map map= new HashMap(); 2.Iterator iter= map.entrySet().iterator(); 首先是map.entrySet ...