一、 数据准备

本文主要介绍Spark SQL的多表连接,需要预先准备测试数据。分别创建员工和部门的Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()

val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp")

val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp员工表
 |-- ENAME: 员工姓名
 |-- DEPTNO: 部门编号
 |-- EMPNO: 员工编号
 |-- HIREDATE: 入职时间
 |-- JOB: 职务
 |-- MGR: 上级编号
 |-- SAL: 薪资
 |-- COMM: 奖金
dept部门表
 |-- DEPTNO: 部门编号
 |-- DNAME:  部门名称
 |-- LOC:    部门所在城市

注:emp.json,dept.json可以在本仓库的resources目录进行下载。

二、连接类型

Spark中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉(或笛卡尔)连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的INNOT IN字句:

-- LEFT SEMI JOIN
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的IN语句
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)

-- LEFT ANTI JOIN
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的IN语句
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)

所有连接类型的示例代码如下:

2.1 INNER JOIN

// 1.定义连接表达式
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
// 2.连接查询
empDF.join(deptDF,joinExpression).select("ename","dname").show()

// 等价SQL如下:
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

2.2 FULL OUTER JOIN

empDF.join(deptDF, joinExpression, "outer").show()
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.3 LEFT OUTER JOIN

empDF.join(deptDF, joinExpression, "left_outer").show()
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.4 RIGHT OUTER JOIN

empDF.join(deptDF, joinExpression, "right_outer").show()
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.5 LEFT SEMI JOIN

empDF.join(deptDF, joinExpression, "left_semi").show()
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()

2.6 LEFT ANTI JOIN

empDF.join(deptDF, joinExpression, "left_anti").show()
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()

2.7 CROSS JOIN

empDF.join(deptDF, joinExpression, "cross").show()
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()

2.8 NATURAL JOIN

自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。

spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()

以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的dept列进行连接,其实际等价于:

spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

由于自然连接常常会产生不可预期的结果,所以并不推荐使用。

三、连接的执行

在对大表与大表之间进行连接操作时,通常都会触发Shuffle Join,两表的所有分区节点会进行All-to-All的通讯,这种查询通常比较昂贵,会对网络IO会造成比较大的负担。

而对于大表和小表的连接操作,Spark会在一定程度上进行优化,如果小表的数据量小于Worker Node的内存空间,Spark会考虑将小表的数据广播到每一个Worker Node,在每个工作节点内部执行连接计算,这可以降低网络的IO,但会加大每个Worker Node的CPU负担。

是否采用广播方式进行Join取决于程序内部对小表的判断,如果想明确使用广播方式进行Join,则可以在DataFrame API 中使用broadcast方法指定需要广播的小表:

empDF.join(broadcast(deptDF), joinExpression).show()

参考资料

  1. Matei Zaharia, Bill Chambers . Spark: The Definitive Guide[M] . 2018-02

更多大数据系列文章可以参见个人 GitHub 开源项目: 程序员大数据入门指南

Spark学习之路(十二)—— Spark SQL JOIN操作的更多相关文章

  1. Spark学习之路 (二十二)SparkStreaming的官方文档

    官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streamin ...

  2. Spark学习之路 (二)Spark2.3 HA集群的分布式安装

    一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...

  3. Spark学习之路 (二十三)SparkStreaming的官方文档

    一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...

  4. Spark学习之路 (二)Spark2.3 HA集群的分布式安装[转]

    下载Spark安装包 从官网下载 http://spark.apache.org/downloads.html 从微软的镜像站下载 http://mirrors.hust.edu.cn/apache/ ...

  5. Spark学习之路 (二十三)SparkStreaming的官方文档[转]

    SparkCore.SparkSQL和SparkStreaming的类似之处 SparkStreaming的运行流程 1.我们在集群中的其中一台机器上提交我们的Application Jar,然后就会 ...

  6. Spark学习之路 (二十八)分布式图计算系统

    一.引言 在了解GraphX之前,需要先了解关于通用的分布式图计算框架的两个常见问题:图存储模式和图计算模式. 二.图存储模式 巨型图的存储总体上有边分割和点分割两种存储方式.2013年,GraphL ...

  7. Spark学习之路 (二十)SparkSQL的元数据

    一.概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. ...

  8. Spark学习之路 (二十八)分布式图计算系统[转]

    引言 在了解GraphX之前,需要先了解关于通用的分布式图计算框架的两个常见问题:图存储模式和图计算模式. 图存储模式 巨型图的存储总体上有边分割和点分割两种存储方式.2013年,GraphLab2. ...

  9. Spark学习之路 (二十)SparkSQL的元数据[转]

    概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. 换句 ...

  10. Spark学习之路 (二十七)图简介

    一.图 1.1 基本概念 图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种数据结构. 这里的图并非指代数中的图.图可以对事物以及事物之间的关系建模,图可以用来表示自然发生的连接 ...

随机推荐

  1. python 简单的Socket编程

    python 编写server的步骤: 1第一步是创建socket对象.调用socket构造函数.如: socket = socket.socket(family, type ) family参数代表 ...

  2. Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)

    domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...

  3. [转]完美解决)Tomcat启动提示At least one JAR was scanned for TLDs yet contained no TLDs

    一.文章前言    本文是亲测有效解决At least one JAR was scanned for TLDs yet contained no TLDs问题,绝对不是为了积分随便粘贴复制然后压根都 ...

  4. WPF实用指南二:移除窗体的图标

    原文:WPF实用指南二:移除窗体的图标 WPF没有提供任何功能来移除窗体上的icon图标.一般的做法是设置一个空白的图标,如下图1: 这种做法在窗体边框与标题之间仍然会保留一片空白. 比较好的做法是使 ...

  5. WPF中使用amCharts绘制股票K线图

    原文:WPF中使用amCharts绘制股票K线图 本想自己用GDI绘图, 通过数据直接绘制一张蜡柱图, 但觉得这样子的功能比较少, 所以到网上搜索一些能画出K线图的控件. 发现DynamicDataD ...

  6. 两个同名controller导致调用崩溃

    之前遇到一个很诡异的bug,大概情况如下: 生成成功,运行正常,调试正常 但是调用目标controller的目标方法,运行自动中断,调试自动中断 没有任何明确的错误提示,包括调试都没有弹窗报错 调用其 ...

  7. 微软Insider Dev Tour 活动

    总述 Insider Dev Tour 将在6月全球29个城市中展开.这次活动是通过与微软全球MVPs和RD合作进行的,并涵盖了微软最新的开者方面的最新消息. 日期提示 2018年5月7日 : 暂无其 ...

  8. Qt SizePolicy 属性(每个控件都有一个合理的缺省sizePolicy。QWidget.size()默认返回值是(640, 480),QWidget.sizeHint()默认返回值是(-1, -1))

    控件的sizePolicy说明控件在布局管理中的缩放方式.Qt提供的控件都有一个合理的缺省sizePolicy,但是这个缺省值有时不能适合 所有的布局,开发人员经常需要改变窗体上的某些控件的sizeP ...

  9. win10 uwp 异步转同步

    原文:win10 uwp 异步转同步 有很多方法都是异步,那么如何从异步转到同步? 可以使用的方法需要获得是否有返回值,返回值是否需要. 如果需要返回值,使用GetResults 如从文件夹获取文件: ...

  10. 如何线程调用C++类成员函数

    方法就是: 1,写成静态成员函数 2,参数为 (void* __this)用来传入类 对象指针(this) 3,进入函数首先    C类名 *_this = (C类名*)__this;  转化为对象指 ...