期望DP的一般思路

转载自_new2zy_

期望\(dp\),也加概率\(dp\)

一般来说,期望\(dp\)找到正确的状态后,转移是比较容易想到的。

但一般情况下,状态一定是“可数”的

事实上,将问题直接作为\(dp\)的状态是最好的。

如,问“\(n\)人做\(XX\)事的期望次数”,那么不妨设计状态为\(f[i]\)表示\(i\)个人做完事的期望

转移一般是递推,通常分两种,一种是从上一个状态转移得(填表法),另一种是转移向下一个状态(刷表法)。

有时期望\(dp\)需以最终状态为初始状态转移,即逆推

如f[i]表示期望还要走f[i]步到达终点。这种状态的转移是刷表法

形如\(f[i]=∑p[i→j]*f[j]+w[i→j]\),其中\(p\)表示转移的概率\(w\)表示转移对答案的贡献

一般来说,初始状态确定时可用顺推,终止状态确定时可用逆推。

大概期望\(dp\)的套路就是这样了吧。。。(我还是菜讲得不太好)

期望DP的一般思路的更多相关文章

  1. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  2. CF235B Let's Play Osu! 期望DP

    貌似是一道很裸的期望\(DP\).直接说思路: 设\(f[i]\)表示到\(i\)位置时的期望分数,但是只有\(f[i]\)的话我们发现是无法转移的,我们还需要知道到\(i\)位置时的期望连续长度,于 ...

  3. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  4. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  5. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  6. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  7. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  8. [Poj2096]Collecting Bugs(入门期望dp)

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 6237   Accepted: 3065 ...

  9. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

随机推荐

  1. 关于rabbitmq

    关于rabbitmq 1 简单介绍rabbitmq RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件).RabbitMQ服务器是用Erlang语言编写的,而 ...

  2. 二叉搜索树中第K小的元素

    给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 示例 1: 输入: root = [ ...

  3. 爬取沪深a股数据

    首先从东方财富网获取股票代码 再从网易财经下载股票历史数据 import requests import random from bs4 import BeautifulSoup as bs impo ...

  4. 什么是uWSGI、WSGI、uwsgi、wsgiref、werkzeug

    我不是代码的生产者,我只是知识的搬运工 uWSGI.WSGI.uwsgi.wsgiref.werkzeug

  5. for循环创建的a标签,当点击时如何确定点击的是哪一个标签?

    创建 代码: js: 效果: 原因: html代码:这种获取选中标签的方式,是通过监听body来实现的,所以body上要增加这个onclick(this)

  6. 曾Python培训讲师-2年Python开发无包装简历-20191217-可公开

    目录 个人介绍 技能介绍 项目经历 自我评价 简历非完整版,需要完整版看下述信息,禁止任何一切私人用途.转发 我生日是27号,那就27元一份,有需求的来购买!只会涨价不会降价,大概卖10份涨1元:曾P ...

  7. IT兄弟连 Java语法教程 数组 数组的声明

    Java语言支持两种语法格式来定义数组: type[] arrayName; type arrayName[]; 对这两种语法格式而言,通常推荐使用第一种格式,因为第一种格式不仅具有更好的语义,而且具 ...

  8. 19-视图集ViewSet和路由Routers

    一.视图集ViewSet 使用视图集ViewSet,可以将一系列逻辑相关的动作放到一个类中: 1.list()提供一组数据 2.retrieve()提供单个数据 3.create()创建数据 4.up ...

  9. 【LOJ#2162】【POI2011】Garbage(欧拉回路)

    [LOJ#2162][POI2011]Garbage(欧拉回路) 题面 LOJ 题解 首先有一个比较显然的结论,对于不需要修改颜色的边可以直接删掉,对于需要修改的边保留.说白点就是每条边要被访问的次数 ...

  10. .net 数据源DataSet 转换成模型

    /// <summary> /// DataSet转换成model 自动赋值返回集合 /// </summary> /// <typeparam name="T ...