ZOJ题目页面传送门

给定一个有向图\(G=(V,E),|V|=n,|E|=m\)(可能有重边和自环,节点从\(0\)开始编号),以及\(q\)组询问,对于每组询问你需要回答有多少条从节点\(0\)开始的最短路经过节点\(x\)(节点\(0\)到某一个节点的最短路可能不唯一),输出答案的后\(10\)位。本题多测。

\(q,n\in\left[1,10^4\right],m\in\left[1,5\times10^4\right]\),边权为正。

既然题目要数最短路的个数,我们可以把那些不在最短路上的边去掉,只保留在最短路上的边,构造出一个新图\(G'=(V,E')\)。这样问题就转化成了在\(G'\)上有多少条从节点\(0\)开始的路径经过节点\(x\)(显然的吧)。那怎么知道那些边该留那些边不该留呢?我们可以先跑一遍堆优化Dijkstra求出到节点\(0\)的最短路长度数组\(dis\),那么\(E'=\{(x,y,len)\mid(x,y,len)\in E,dis_y=dis_x+len\}\)。

接下来我们就要求在\(G'\)上有多少条从节点\(0\)开始的路径经过节点\(x\)了。我们考虑将一条从节点\(0\)开始、经过节点\(x\)、终点为\(y\)的路径拆成两段:\(0\to x,x\to y\),对它们分别计数,最后相乘即可。很显然,\(G'\)是无环的,也就是一个DAG(因为边权为正),这样就可以在\(G'\)上DP了。设\(dp1_i\)表示路径\(0\to i\)的个数,\(dp2_i\)表示以\(i\)为起点的路径的个数(即\(\sum\limits_{j\in V}\text{路径}i\to j\text{的个数}\))。状态转移方程显然是:

\[\begin{aligned}
dp1_i&=\begin{cases}1&i=0\\\sum\limits_{(j,i,len)\in E'}dp1_j&i>0\end{cases}\\
dp2_i&=\sum_{(i,j,len)\in E'}dp2_j+1
\end{aligned}
\]

可这是一个图啊,DP顺序是什么呢?容易发现,要想知道\(dp1_i\),得先知道\(\forall j\left((j,i,len)\in E'\right),dp1_j\),所以要按照拓扑序DP;\(dp2\)反之,要按照拓扑逆序DP。(如果你懒得写拓扑排序,也可以记忆化搜索)

这题还有个毒瘤的地方,就是要保留后\(10\)位(即\(\bmod 10^{10}\)),在乘法的时候会到\(10^{20}\),爆unsigned long long。这时聪(rui)明(zhi)的读者可能会写高精度(毕竟只有最后一步才是乘法,不会TLE),但有个更巧妙的方法:利用乘法分配律,显然

\[xy\bmod10^{10}=\left(\left(10^5\left\lfloor\dfrac x{10^5}\right\rfloor+x\bmod10^5\right)\left(10^5\left\lfloor\dfrac y{10^5}\right\rfloor+y\bmod10^5\right)\right)\bmod10^{10}=\left(10^{10}\left\lfloor\dfrac x{10^5}\right\rfloor\left\lfloor\dfrac y{10^5}\right\rfloor+10^5\left\lfloor\dfrac x{10^5}\right\rfloor\left(y\bmod10^5\right)+10^5\left(x\bmod10^5\right)\left\lfloor\dfrac y{10^5}\right\rfloor+\left(x\bmod10^5\right)\left(y\bmod10^5\right)\right)\bmod10^{10}=\left(\left(10^5\left\lfloor\dfrac x{10^5}\right\rfloor\right)\left(y\bmod10^5\right)+\left(x\bmod10^5\right)\left(10^5\left\lfloor\dfrac y{10^5}\right\rfloor\right)+\left(x\bmod10^5\right)\left(y\bmod10^5\right)\right)\bmod10^{10}=\left(\left(x\bmod10^5\right)y+\left(10^5\left\lfloor\dfrac x{10^5}\right\rfloor\right)\left(y\bmod10^5\right)\right)\bmod10^{10}
\]

这样最大是\(10^5\times10^{10}=10^{15}\)级别的,不会爆。

下面贴AC代码:(最近码风有了很大的改变)

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define mp make_pair
#define X first
#define Y second
#define pb push_back
const int mod=10000000000ll,inf=1e18;
const int N=10000;
int n/*点数*/,m/*边数*/,qu/*数据组数*/;
vector<pair<int,int> > nei[N]/*原邻接表*/;
vector<int> dnei[N]/*新邻接表*/,rnei[N]/*新反邻接表*/;
int dis[N]/*到节点0的最短路长度*/;
bool vis[N]/*访问标记*/;
int ideg[N]/*新图中的入度*/;
void dijkstra(){//堆优化Dijkstra
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > > q;
q.push(mp(0,0));
for(int i=1;i<n;i++)dis[i]=inf;
for(int i=0;i<n;i++)vis[i]=false;
while(q.size()){
int x=q.top().Y;
q.pop();
if(vis[x])continue;
vis[x]=true;
for(int i=0;i<nei[x].size();i++){
int y=nei[x][i].X,len=nei[x][i].Y;
if(dis[x]+len<dis[y])q.push(mp(dis[y]=dis[x]+len,y));
}
}
//建新图
for(int i=0;i<n;i++)dnei[i].clear(),rnei[i].clear();
for(int i=0;i<n;i++)for(int j=0;j<nei[i].size();j++){
int x=nei[i][j].X,len=nei[i][j].Y;
if(dis[x]==dis[i]+len)dnei[i].pb(x),rnei[x].pb(i),ideg[x]++;
}
}
vector<int> topo;//拓扑序
void toposort(){//拓扑排序
queue<int> q;
for(int i=0;i<n;i++)if(!ideg[i])q.push(i);
topo.clear();
while(q.size()){
int x=q.front();
q.pop();
topo.pb(x);
for(int i=0;i<dnei[x].size();i++){
int y=dnei[x][i];
ideg[y]--;
if(!ideg[y])q.push(y);
}
}
}
int dp1[N]/*dp1[i]表示新图中路径0->i的个数*/,dp2[N]/*dp2[i]表示新图中路径i->j的个数之和*/;
int prod(int x,int y){//mod 10^5意义下的乘法
int lx=x%100000,ly=y%100000;
return (lx*y+(x-lx)*ly)%mod;
}
void prt(int x){//输出后10位
vector<int> v;
for(int i=1;i<=10;i++)v.pb(x%10),x/=10;
for(int i=9;~i;i--)printf("%lld",v[i]);
}
void mian(){
for(int i=0;i<n;i++)nei[i].clear();
while(m--){
int x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
nei[x].pb(mp(y,z));
}
dijkstra();
toposort();
for(int i=0;i<n;i++){//dp1,拓扑序
int x=topo[i];
dp1[x]=!x;
for(int j=0;j<rnei[x].size();j++)
(dp1[x]+=dp1[rnei[x][j]])%=mod;
}
for(int i=n-1;~i;i--){//dp2,拓扑逆序
int x=topo[i];
dp2[x]=1;
for(int j=0;j<dnei[x].size();j++)
(dp2[x]+=dp2[dnei[x][j]])%=mod;
}
while(qu--){
int x;
scanf("%lld",&x);
prt(prod(dp1[x],dp2[x]));/*相乘得到总数*/puts("");
}
}
signed main(){
// freopen("C:\\Users\\chenx\\OneDrive\\桌面\\txt.txt","r",stdin);
while(~scanf("%lld%lld%lld",&n,&m,&qu))mian();
return 0;
}

我做这题的时候打错了一个字母,把prod(int,int)函数里的ly=y%100000打成了ly=x%100000,导致我调了几个小时。。。哎,血的教训!

ZOJ 3408 Gao的更多相关文章

  1. zoj 3672 Gao The Sequence

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4915题意:a[k]-一个任意的数,这个数要等于a[1]~a[k]每个数减去任意 ...

  2. ZOJ 3647 Gao the Grid dp,思路,格中取同一行的三点,经典 难度:3

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4837 三角形的总数=格子中任取3个点的组合数-同一横行任取3个点数目-同一纵行 ...

  3. zoj 3647 Gao the Grid

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4837 先求出从所有点随机找出三个点的组合数,然后去掉共线的,平行好去掉,斜线就 ...

  4. Zoj 3535 Gao the String II (AC自己主动机+dp)

    题目大意: 用集合A中的串构造出一个串,使之让很多其它的setB中的串成为他的子串. 思路分析: 和 Codeforces 86C 几乎相同. 只是这里是要用A中的构造. 先用A 和 B的串构造一个自 ...

  5. ZOJ Monthly, November 2012

    A.ZOJ 3666 Alice and Bob 组合博弈,SG函数应用 #include<vector> #include<cstdio> #include<cstri ...

  6. AC自动机-算法详解

    What's Aho-Corasick automaton? 一种多模式串匹配算法,该算法在1975年产生于贝尔实验室,是著名的多模式匹配算法之一. 简单的说,KMP用来在一篇文章中匹配一个模式串:但 ...

  7. zoj Gao The Sequence

    Gao The Sequence Time Limit: 2 Seconds      Memory Limit: 65536 KB You are given a sequence of integ ...

  8. Zoj 3781(构造)

    Zoj 3781(构造) Zoj 3781 As we all know, Coach Gao is a talented chef, because he is able to cook M dis ...

  9. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

随机推荐

  1. 【JavaScript】深入理解call,以及与apply、bind的区别

    一.call call有两个妙用 1.继承(我前面的文章有提到用call实现call继承,有兴趣可以看下.https://www.cnblogs.com/pengshengguang/p/105476 ...

  2. Object.toString()打印“地址”的原理

    Object.toString()打印"地址"的原理 @(java) 首先,打印的绝不是地址 public native int hashCode(); public boolea ...

  3. Drools规则引擎-判断集合(List)是否包含集合

    问题场景 在使用Drools规则引擎时,有朋友会遇到这样的问题,就是在when部分判断的两个参数都是集合类型,比如两个List,此时要判断一个集合是否包含另外一个集合的内容. 拿一个具体的例子来说明, ...

  4. windows切换mac遇到的问题

    1. 前端代码需要安装npm包 所以需要对整个文件夹都赋予管理员权限 2. 在npm i的时候如果权限不足 查看是哪一行调用了哪个文件夹,赋予权限 3. Dsp-fe 本地环境 除了需要配置host  ...

  5. Java EE核心框架实战(1)

    内容前言:本书适合具有一定Java编程基础的读者阅读,增强其项目实战能力. 2014年9月第1版 下载本书所有源代码可通过  http://pan.baidu.com/s/1i3sshXr 本书配套的 ...

  6. 内核下载、nfs挂载:个性问题及解决方法~~共勉

    开发板下载内核遇到starting waiting问题时: 首先想到是下载地址的问题! 将原本下载地址减去0X40,例如:smart210下载地址0X20008000,修改为0X20007FC0,即可 ...

  7. 微服务SpringCloud之熔断监控Hystrix Dashboard和Turbine

    Hystrix-dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard我们可以在直观地看到各Hystrix Command的请求响应时间, 请求成功率等数 ...

  8. php 中文乱码问题

    http://www.jb51.net/article/30064.htm 翻了好多帖子,发现不知道是不是自己脸黑, 文件头这边加上header("Content-Type: text/ht ...

  9. 题解 P5016 【龙虎斗】

    首先祝各位大佬noip有个好成绩吧 当时比赛有个大数据,蒟蒻我暴力居然过了,好激动 这题一定要注意开long long (那个大数据就是我开long long才过的) 还有刚开始应设置答案为m(见解析 ...

  10. Spring_AOP基于AspectJ的注解开发&JDBC的模板使用&事务管理(学习笔记3)

    一:AOP基于AspectJ的注解开发 1,简单的实例: 1)引入相应的jar包 ​ 2)在配置文件里引入相关约束 <beans xmlns="http://www.springfra ...