Chapter 07-Basic statistics(Part3 correlations)
这一部分使用R基础已安装包中的state.x77数据集。该数据集的数据是关于美国50个州在1977年对人口,收入,文盲率,平均寿命,谋杀率,高中毕业率统计所得。
1.关联的种类(types of correlations)
(1)PEARSON,SPEARMAN,KENDALL CORRELATIONS
·Pearson:评估两个数值变量间的线性关系的程度的暂时性关联;
·Spearman’s Rank Order:评估两个有排序关系的变量的相关率;
·Kendall's Tau:是非参数参与的排序关联。
cor(x,use=,method=)
其中,缺省时,use="everything",method="pearson"
例01:
> states<-state.x77[,1:6]
> cov(states)
Population Income Illiteracy Life Exp Murder HS Grad
Population 19931683.7588 571229.7796 292.8679592 -407.8424612 5663.523714 -3551.509551
Income 571229.7796 377573.3061 -163.7020408 280.6631837 -521.894286 3076.768980
Illiteracy 292.8680 -163.7020 0.3715306 -0.4815122 1.581776 -3.235469
Life Exp -407.8425 280.6632 -0.4815122 1.8020204 -3.869480 6.312685
Murder 5663.5237 -521.8943 1.5817755 -3.8694804 13.627465 -14.549616
HS Grad -3551.5096 3076.7690 -3.2354694 6.3126849 -14.549616 65.237894
>
> cor(states)
Population Income Illiteracy Life Exp Murder HS Grad
Population 1.00000000 0.2082276 0.1076224 -0.06805195 0.3436428 -0.09848975
Income 0.20822756 1.0000000 -0.4370752 0.34025534 -0.2300776 0.61993232
Illiteracy 0.10762237 -0.4370752 1.0000000 -0.58847793 0.7029752 -0.65718861
Life Exp -0.06805195 0.3402553 -0.5884779 1.00000000 -0.7808458 0.58221620
Murder 0.34364275 -0.2300776 0.7029752 -0.78084575 1.0000000 -0.48797102
HS Grad -0.09848975 0.6199323 -0.6571886 0.58221620 -0.4879710 1.00000000
> cor(states,method="spearman")
Population Income Illiteracy Life Exp Murder HS Grad
Population 1.0000000 0.1246098 0.3130496 -0.1040171 0.3457401 -0.3833649
Income 0.1246098 1.0000000 -0.3145948 0.3241050 -0.2174623 0.5104809
Illiteracy 0.3130496 -0.3145948 1.0000000 -0.5553735 0.6723592 -0.6545396
Life Exp -0.1040171 0.3241050 -0.5553735 1.0000000 -0.7802406 0.5239410
Murder 0.3457401 -0.2174623 0.6723592 -0.7802406 1.0000000 -0.4367330
HS Grad -0.3833649 0.5104809 -0.6545396 0.5239410 -0.4367330 1.0000000
·cov()函数:产生了variances & covariances;
·cor()函数:提供了Pearson Product Moment correlation coefficients;
·cor( ,method="spearman"):提供了Spearman Rank Order correlation coefficients。
例02:
> x<-states[,c("Population","Income","Illiteracy","HS Grad")]
> y<-states[,c("Life Exp","Murder")]
> cor(x,y)
Life Exp Murder
Population -0.06805195 0.3436428
Income 0.34025534 -0.2300776
Illiteracy -0.58847793 0.7029752
HS Grad 0.58221620 -0.4879710
用上面的方法可以产生非方矩阵(nonsquare matrices)。
注意,结果不能表明是否the correlations differ significantly from 0,故需要tests of significance.
(2)部分关联(PARTIAL CORRELATIONS)
partial correlation: a correlation between two quantitative variables,controlling for one or more other quantitative variables.
ggm包中的pcor()函数:提供partial correlation coefficients。
pcor(u,S)
·u: 数据的向量,前两个数标记需要关联的数,剩余的数标记其他conditioning variables,即variables being partialed out;
·S: covariance matrix among the variables。
例03:
> library(ggm)
> # partial correlation of population and murder rate, controlling
> # for income, illiteracy rate, and HS graduation rate
> pcor(c(1,5,2,3,6), cov(states))
[1] 0.346
注释:0.346是指人口与谋杀率之间的correlation,并且要控制收入,文盲率,高中毕业率的影响。
(3)OTHER TYPES OF CORRELATIONS
polycor()包中的函数hetcor()函数:计算一个heterogeneous correlation matrix,
在数值变量(numerical variables)间包含Pearson product-moment correlations,
在数值变量与常量(ordinal variables)间有polyserial correlations,
在常量间有polychoric correlations,
在two dichotomous variables间有tetrachoric correlations。
2. 测试关联的重要值(Testing correlations for significance)
cor.test()函数:测试一个个体的Pearson,Spearman,Kendall correlation coefficient.
cor.test(x,y,alternative=,method=)
·x与y:是要被关联的变量;
·alternative:特指two-tailed,one-tailed test, ("two.side","less","greater");
alternative="less":研究的假设是人口关联小于0;
alternative="greater":研究的假设是人口关联大于0;
缺省状态是,alternative="two side".
·method:特指关联的方式,(“pearson”,“kendall”,“spearman”)。
例04:
> states<-state.x77[,1:6]
> cor(states)
Population Income Illiteracy Life Exp Murder HS Grad
Population 1.00000000 0.2082276 0.1076224 -0.06805195 0.3436428 -0.09848975
Income 0.20822756 1.0000000 -0.4370752 0.34025534 -0.2300776 0.61993232
Illiteracy 0.10762237 -0.4370752 1.0000000 -0.58847793 0.7029752 -0.65718861
Life Exp -0.06805195 0.3402553 -0.5884779 1.00000000 -0.7808458 0.58221620
Murder 0.34364275 -0.2300776 0.7029752 -0.78084575 1.0000000 -0.48797102
HS Grad -0.09848975 0.6199323 -0.6571886 0.58221620 -0.4879710 1.00000000
> cor.test(states[,3],states[,5]) Pearson's product-moment correlation data: states[, 3] and states[, 5]
t = 6.8479, df = 48, p-value = 1.258e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5279280 0.8207295
sample estimates:
cor
0.7029752
注意:cor.test()函数一次只能测试一组关联。
corr.test()函数(psych包中)为pearson,spearman,kendall关联的矩阵提供关联与重要值。
例05:
> library(psych)
> corr.test(states,use="complete")
Call:corr.test(x = states, use = "complete")
Correlation matrix
Population Income Illiteracy Life Exp Murder HS Grad
Population 1.00 0.21 0.11 -0.07 0.34 -0.10
Income 0.21 1.00 -0.44 0.34 -0.23 0.62
Illiteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66
Life Exp -0.07 0.34 -0.59 1.00 -0.78 0.58
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49
HS Grad -0.10 0.62 -0.66 0.58 -0.49 1.00
Sample Size
[1] 50
Probability values (Entries above the diagonal are adjusted for multiple tests.)
Population Income Illiteracy Life Exp Murder HS Grad
Population 0.00 0.59 1.00 1.0 0.10 1
Income 0.15 0.00 0.01 0.1 0.54 0
Illiteracy 0.46 0.00 0.00 0.0 0.00 0
Life Exp 0.64 0.02 0.00 0.0 0.00 0
Murder 0.01 0.11 0.00 0.0 0.00 0
HS Grad 0.50 0.00 0.00 0.0 0.00 0
注意:corr.test()函数中:
·use="pairwise"或"complete", pairwise deletion of missing values respectively;
·method="pearson"(缺省), "spearman", "kendall".
psych包中的pcor.test()函数:用来测试conditional independence of two variables controlling for one or more additional variables,assuming multivariate normality.
pcor.test(r,q,n)
r:pcor()函数产生的partial correlation;
q:被控制的变量数;
n:样本大小。
psych包中的r.test()函数:提供许多significance的测试。
Chapter 07-Basic statistics(Part3 correlations)的更多相关文章
- Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics
NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...
- Spark MLlib 之 Basic Statistics
Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法 ...
- Chapter 06—Basic graphs
三. 柱状图(Histogram) 1. hist():画柱状图 ·breaks(可选项):控制柱状图的小柱子的条数: ·freq=FALSE:基于概率(probability),而非频率(frequ ...
- Chapter 04—Basic Data Management
1. 创建新的变量 variable<-expression expression:包含一组大量的操作符和函数.常用的算术操作符如下表: 例1:根据已知变量,创建新变量的三种途径 > my ...
- Chapter 2 Basic Elements of JAVA
elaborate:详细说明 Data TypesJava categorizes data into different types, and only certain operationscan ...
- 吴裕雄--天生自然 R语言开发学习:基本统计分析(续三)
#---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...
- 吴裕雄--天生自然 R语言开发学习:基本统计分析
#---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...
- [Hive - LanguageManual] Statistics in Hive
Statistics in Hive Statistics in Hive Motivation Scope Table and Partition Statistics Column Statist ...
- BK: Data mining, Chapter 2 - getting to know your data
Why: real-world data are typically noisy, enormous in volume, and may originate from a hodgepodge of ...
随机推荐
- Python3爬虫(3)_urllib.error
注:参照https://blog.csdn.net/c406495762/article/details/59488464 Learn_ERROR: urllib.error可以接收有urllib.r ...
- [考试反思]0908NOIP模拟测试40:颠簸
怎么说呢?好像也没什么可说的. 把我的优缺点都表现出来了的一场考试. T3是个小的dp想出来就能打,打出来就能A.我上来过了一遍题目觉得T3最简单(然而也并不是很简单) 然后就开始打,交,其实已经A了 ...
- AndroidOS体系结构
首先上图一张 对照着图,我们再来看Android 系统的体系结构就爽多了.我们从底层向上进行分析. 一.Linux 内核层 Linux Kernel 基于linux2.6.其核心系统服务如安全性.内存 ...
- 七月月赛T1
题目背景 借助反作弊系统,一些在月赛有抄袭作弊行为的选手被抓出来了! 题目描述 现有 2^n\times 2^n (n\le10)2n×2n(n≤10) 名作弊者站成一个正方形方阵等候 kkksc03 ...
- python快速获取网页标准表格内容
from html_table_parser import HTMLTableParser def tableParse(value): p = HTMLTableParser() p.feed(va ...
- tomcat的catalina.out日志切割
目前我们的日志文件catalina.out累积后非常大,部分应用的catalina.out达到几十G并且还在持续增长. 日志文件太大不便于阅读和排查问题.业务增长不断增长,日志也在不断增加,为了以后便 ...
- Git III: 撤销操作
所谓撤销操作,无非就是后悔药.对Git来说,撤销操作主要是以下几块: 撤销已经提交的Commit. 对已经通过git add加入Stage的文件,进行unstage操作. 对已经是Untracked却 ...
- PHP 教你使用 Swoole-Tracker 秒级定位 PHP 卡死问题
PHPer 肯定收到过这样的投诉:小菊花一直在转!你们网站怎么这么卡!当我们线上业务遇到这种卡住(阻塞)的情况,大部分 PHPer 会两眼一抹黑,随后想起那句名言:性能瓶颈都在数据库然后把锅甩给DBA ...
- 小白学 Python 爬虫(1):开篇
人生苦短,我用 Python 引言 各位同学大家好,好久不见(可能只有一两天没见:囧)~~~ 先讲一件事情,昨天为啥没更新. emmmmmmmmm,当然是因为加班啦,快到年底了,公司项目比较忙,最近的 ...
- 阿里云ECS服务器部署HADOOP集群(三):ZooKeeper 完全分布式集群搭建
本篇将在阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建的基础上搭建,多添加了一个 datanode 节点 . 1 节点环境介绍: 1.1 环境介绍: 服务器:三台阿里 ...