题目描述:

Description:

Input

输入一个正整数N,代表有根树的结点数

Output

输出这棵树期望的叶子节点数。要求误差小于1e-9

Sample Input

1

Sample Output

1.000000000

HINT

1<=N<=10^9

洛谷链接

BZOJ链接

思路:

一眼数学期望(毕竟题目里都已经说了),那期望是什么呢???

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

\[\text{——百度百科}
\]

那这道题目的期望就是\(\text{有n个节点的树的}\frac{\text{叶子节点总个数}}{树的个数}\)了。

那我们康康这里面有什么不为人知的规律吧:

树的个数就是\(Cat_n\)!!!

叶子节点总个数就是\(Cat_{n-1}\times n\)!!!

发现没???

那柿子就是\(\frac{Cat_{n-1}\times n}{Cat_n}\)

当然直接这么做是不行的,你需要把它化简成\(\frac{n^2 + n}{ 4n - 2}\)

代码:

int main()
{
cin >> n;
printf("%.9lf", (n * n + n) / (4 * n - 2)); //公式
return 0;
}

【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论的更多相关文章

  1. luogu P3978 [TJOI2015]概率论

    看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...

  2. 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论

    题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...

  3. P3978 [TJOI2015]概率论

    \(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...

  4. [洛谷P3978][TJOI2015]概率论

    题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...

  5. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  6. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  7. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  8. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  9. [Luogu 3973] TJOI2015 线性代数

    [Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...

  10. luogu P3975 [TJOI2015]弦论 SAM

    luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...

随机推荐

  1. python(可迭代对象,迭代器,生成器及send方法详解)

    一.可迭代对象 对象必须提供一个__iter__()方法,如果有,那么就是可迭代对象, 像列表,元祖,字典等都是可迭代对象可使用isinstance(obj,Iterable)方法判断 from co ...

  2. 学习笔记52_mongodb增删改查

    使用use db1作为当前数据库 如果没有db1,会自动创建 使用switch db2,当前数据库切换为db2 使用show dbs,显示当前所有数据库 使用show collection ,显示当前 ...

  3. AtCoder Grand Contest 038

    目录 \(\bf A - 01 \ Matrix\) \(\bf B- Sorting \ a \ Segment\) \(\bf C-LCMs\) \(\bf D-Unique \ Path\) 这 ...

  4. 「刷题」JZPKIL

    这道反演题,真牛逼. 以下用$B$代表伯努利数,$l*g=f$代表狄利克雷卷积,先推式子. 对于给出的$n,x,y$求一百组数据的$ans$ $\begin{array}{rcl} ans & ...

  5. PHP 精典面试题(附答案)

    1.输出Mozilla/4.0(compatible;MISIE5.01;Window NT 5.0)是,可能输出的语句是? A:$_SERVER['HTTP_USER_AGENT_TYPE']; B ...

  6. Linux JDK 安装与配置

    一.下载 JDK 官网链接:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 系 ...

  7. Scrapy简单上手 —— 安装与流程

    一.安装scrapy 由于scrapy依赖较多,建议使用虚拟环境 windows下pip安装(不推荐) 1.安装virtualenv pip install virtualenv 2.在你开始项目的文 ...

  8. (Codeforce)Correct Solution?

    One cold winter evening Alice and her older brother Bob was sitting at home near the fireplace and g ...

  9. 通过 position:fixed 实现底部导航

    通过 position:fixed 实现底部导航 HTML <div id="footer">页脚</div> CSS #footer { clear: b ...

  10. ZeroC ICE的远程调用框架 Slice如何帮助我们进行Ice异步编程(AMI,AMD)

    Slice最大的用处就是为我们使用Ice进行编程,代劳绝大部分的重复性代码,并提供一些帮助性的框架代码,如用于AMI和AMD方式进行异步编程的回调框架. 当Slice不为我们生成代码时,我们仍然可以按 ...