【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述:
Description:
Input
输入一个正整数N,代表有根树的结点数
Output
输出这棵树期望的叶子节点数。要求误差小于1e-9
Sample Input
1
Sample Output
1.000000000
HINT
1<=N<=10^9
思路:
一眼数学期望(毕竟题目里都已经说了),那期望是什么呢???
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
\[\text{——百度百科}
\]
那这道题目的期望就是\(\text{有n个节点的树的}\frac{\text{叶子节点总个数}}{树的个数}\)了。
那我们康康这里面有什么不为人知的规律吧:
树的个数就是\(Cat_n\)!!!
叶子节点总个数就是\(Cat_{n-1}\times n\)!!!
发现没???
那柿子就是\(\frac{Cat_{n-1}\times n}{Cat_n}\)
当然直接这么做是不行的,你需要把它化简成\(\frac{n^2 + n}{ 4n - 2}\)
代码:
int main()
{
cin >> n;
printf("%.9lf", (n * n + n) / (4 * n - 2)); //公式
return 0;
}
【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论的更多相关文章
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- [洛谷P3978][TJOI2015]概率论
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
随机推荐
- 宋宝华:关于Ftrace的一个完整案例
本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) Ftrace简介 Ftrace是Lin ...
- [git]将代码上传到github
1.右键你的项目,如果你之前安装git成功的话,右键会出现两个新选项,分别为Git Gui Here,Git Bash Here,这里我们选择Git Bash Here,进入如下界面 2.接下来输入如 ...
- [考试反思]0829NOIP模拟测试33:仰望
,160,160,160... 凑和吧,但是莫名开心. 然而这次没有什么想讲的. T1,等比数列求和,XX题,水极,20分钟找规律,找错,快速幂又打错,没检查,10分. T2,想复杂了,想了很久效率很 ...
- CPU负载和CPU使用率
参考CSDN博客:https://blog.csdn.net/ffzhihua/article/details/87257607 一.概念(本人理解) CPU负载:平均负载(load average) ...
- 使用FinalShell 安装jdk和tomcat流程(Linux系统是centOS7.5)
本文是作者原创,版权归作者所有.若要转载,请注明出处 我今天刚刚买了一个一年的百度云服务器,85元,还是很便宜的,正好用来练练linux,至于为什么使用FinalShell 而不是xshell,因为F ...
- Apache httpd 2.4.27开启GZIP压缩功能
转载自素文宅博客:https://blog.yoodb.com/yoodb/article/detail/1373 HTTP协议上的GZIP编码是一种用来改进WEB应用程序性能的文件压缩算法,现在的应 ...
- LoadRunner具体流程
创建负载测试场景场景目标:模拟10个用户同时登陆.搜索航班.购买机票.查看航班路线并退出打开Controller并创建一个新场景1.打开HP LoadRunner2.打开Controller在Load ...
- Python连接SqlServer+GUI嵌入式——学生管理系统1.0
学生管理系统1.0 1.建学生数据库 2.数据库嵌入高级语言(Python) 3.界面设计 简化思路: 1.先通过SqlServer2012建立学生数据库,包括账号.密码,姓名.选课等信息 2.运用P ...
- nyoj 65-另一种阶乘问题 (Java 高精度)
65-另一种阶乘问题 内存限制:64MB 时间限制:3000ms 特判: No 通过数:16 提交数:18 难度:1 题目描述: 大家都知道阶乘这个概念,举个简单的例子:5!=1*2*3*4*5.现在 ...
- SpringBoot 源码解析 (七)----- Spring Boot的核心能力 - 自定义Servlet、Filter、Listener是如何注册到Tomcat容器中的?(SpringBoot实现SpringMvc的原理)
上一篇我们讲了SpringBoot中Tomcat的启动过程,本篇我们接着讲在SpringBoot中如何向Tomcat中添加Servlet.Filter.Listener 自定义Servlet.Filt ...