浅说——数位DP
老子听懂了!!!!!
好感动!!!
不说多了:Keywords: 数位DP,二进制,异或。
“在信息学竞赛中,有一类与数位有关的区间统计问题。这类问题往往具有比较浓厚的数学味道,无法暴力求解,需要在数位上进行递推等操作。”——刘聪《浅谈数位类统计问题》
这类问题往往需要一些预处理,这就用到了数位DP。
需要统计区间[l,r]的满足题意的数的个数,这往往可以转换成求[0,r]-[0,l)
基本思想与方法
有了上述性质,我们就可以从高到低枚举第一次<n对应位是哪一位。
这样之前的位确定了,之后的位就不受n的限制即从00...0~99...9,可以先预处理,然后这时就可以直接统计答案。
预处理F数组。
F[i,st] 代表 位数为i(可能允许前导0。如00058也是个5位数),状态为st的方案数。这里st根据题目需要确定。
如i=4,f[i,st]也就是0000~9999的符合条件的数的个数(十进制)
决策第i位是多少(such as 0~9)
F[i,st] = F[i,st] + f[i–1,st']
st'为相对应的状态
参照刚刚所说的基本思路。预处理f数组,然后统计[0,m] - [0,n).
f[i,j]代表开头是j的i位数中不含"62"或"4"的数有几个。
如f[2,6]包含60,61,63,65,66,67,68,69
for(i=;i<=;i++)//因为数据为1000000,所以预处理7位
for(j=;j<=;j++)//第i位
for(k=;k<=;k++)//第i-1位
if(j!=&&!(j==&&k==))f[i][j]+=f[i-][k];
接下来,怎么算出0-n和0-m区间的答案数呢?
用一个通用函数(Cal):
如456=f[][]+f[][]+f[][]+f[][]+f[][]//(为什么不枚举到5呢?因为再下一位枚举了) +f[][]+f[][]+f[][]+f[][]+f[][]//(就是这一位) +f[][]+f[][]+f[][]+f[][]+f[][]+f[][]+f[][].
具体代码如下:
#include<cstdio>//最右边是第一位
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int f[][];
int Cal(int k)//求1~k中有多少符合的数.
{
int len,digit[],i,j,ans=;
memset(digit,,sizeof(digit)),len=;//digit[i]为当前的某个数从右到左第i个位置的数是多少.
while(k>){digit[++len]=k%;k/=;}
for(i=len;i>=;i--)
{
for(j=;j<=digit[i]-;j++)//每一位只能到k的下一位,所以计算的数实际只能到k-1.所以Cal()中传数要加1.
{
if(j!=&&!(j==&&digit[i+]==))ans+=f[i][j];
}
if(digit[i]==||(digit[i]==&&digit[i+]==))break; //如果这一位本来就没法,则后面的情况报废
}
return ans;
}
int main()
{
int n,m,i,j,k;
memset(f,,sizeof(f));//f[i][j]为以j开始的且不含"62"和"4"位数为i的个数.
f[][]=;
for(i=;i<=;i++)
{
for(j=;j<=;j++)//第i位
{
for(k=;k<=;k++)//第i-1位
{
if(j!=&&!(j==&&k==))f[i][j]+=f[i-][k];
}
}
}
while()
{
scanf("%d %d",&n,&m);
if(n==&&m==)break;
printf("%d\n",Cal(m+)-Cal(n));//因为当前的Cal(k)是计算出从1到k-1的符合条件的数的个数,所以要计算n~m的个数要用Cal(m+1)-Cal(n).
}
return ;
}
变式模板题_P2657 [SCOI2009]windy数
这题还是很简单的啦(差点没做出来
个位打表大佬请离开(包括记搜),我这里讲的是DP!!!
首先Cal(b+1)-Cal(a),大家都懂吧(算了,复制一遍吧<<((因为当前的Cal(k)是计算出从1到k-1的符合条件的数的个数,所以要计算a~b的个数要用Cal(b+1)-Cal(a).))>>)
f[i][j]定义一样,以j开始的且符合条件的总位数为i的答案个数.(好绕啊)
预处理转移不用讲吧:f[i][j]+=f[i-1][k];(还是复制了)
有个小细节,每个一位数答案都为1,所以分f[1][j]=0.
重点讲讲不同之处(Cal函数):
显然位数比x要小的数字都是合法的都在[1,x)区间内,直接统计就行.(第一次加ans)
位数和x一样最高位的数字比x小的数字都是合法的都在[1,x)区间内直接统计就行(第二次加ans)
位数和x一样,最高位又和x一样我们从左到右扫一遍x各个位子上的数字大小然后枚举合法的该位子上的数[0,9]判断是否合法就行。(第三次加ans)
#include<bits/stdc++.h>
using namespace std;
int f[][];
int a,b;
int digit[],cnt,ans;
void init ()
{
for (int i=;i<=;i++) f[][i]=;
for (int i=;i<=;i++)
for (int j=;j<=;j++)
for (int k=;k<=;k++)
if(abs(j-k)>=)
f[i][j]+=f[i-][k];
}
int Cal(int x)
{
//freopen("a.in", "r", stdin);
memset(digit,,sizeof(digit));
ans=;
cnt=;
while(x)
{
digit[++cnt]=x%;
x/=;
}
//三种情况
for (int i=;i<cnt;i++)
for (int j=;j<=;j++)
ans+=f[i][j]; //在不到x位数前,所有情况符合。
for (int i=;i<digit[cnt];i++) ans+=f[cnt][i]; //x位数,最高位未到digit[cnt]。
for (int i=cnt-;i>=;i--)//x位数,最高位到digit[cnt]
{
for (int j=;j<digit[i];j++)
if(abs(j-digit[i+])>=)
ans+=f[i][j];
if(abs(digit[i]-digit[i+])<)
break;
}
//printf("%d\n",ans);
return ans;
}
void work()
{
cin>>a>>b;
cout<<Cal(b+)-Cal(a)<<'\n';
}
int main()
{
init();
work();
return ;
}
同步题解
加油……
浅说——数位DP的更多相关文章
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
- bzoj1026数位dp
基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...
- uva12063数位dp
辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...
- HDU2089 不要62[数位DP]
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 数位DP GYM 100827 E Hill Number
题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...
- 数位dp总结
由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...
- 数位DP入门
HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...
- 数位DP之奥义
恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...
- 浅谈数位DP
在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...
随机推荐
- Ubuntu 14.04 64位字体美化(使用黑文泉驿)
Ubuntu 14.04安装和升级后,,斜体字体变得很难看,昨天,我得到一个晚上,最终,管理一个线索,这里整洁. 在线调研后,.一致的观点是,,使用开源字体库文泉驿理想的黑色字体效果,效果甚至没有丢失 ...
- Matlab随笔之分段线性函数化为线性规划
原文:Matlab随笔之分段线性函数化为线性规划 eg: 10x, 0<=x<=500 c(x)=1000+8x, 500<=x<=1000 300 ...
- WPF编游戏系列 之九 物品清单再优化
原文:WPF编游戏系列 之九 物品清单再优化 在"第三篇"和"第四篇"中通过用户控件和数据绑定功能对物品清单进行一些优化减少了部分C#代码,但感觉 ...
- XF 导航页面
using System; using Xamarin.Forms; using Xamarin.Forms.Xaml; [assembly: XamlCompilation (XamlCompila ...
- jquery表单过滤器
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- delphi中WebBrowser的parent改变时变成空白问题的解决(覆盖CreateWnd和DestroyWnd)
这段时间在做一个delphi界面打开网页的功能,且此网页所在窗口可完整显示,可缩小到另一个窗口的panel上显示 可是在改变网页所在窗口时,WebBrowser控件变成了空白 上网google了半天, ...
- SQLServer 不允许保存更改的解决办法
启动SQL Server Management Studio 工具菜单----选项----Designers(设计器)----阻止保存要求重新创建表的更改 取消勾选即可.
- 深入解析Android关机
下图详细阐释了Android的关机顺序. 第一步: 按住电源按钮半秒钟(500ms). 第二步: 之后,PhoneWindowManager.java 将捕获长按电源按钮这一事件并调用“interce ...
- 小记同学一次奇葩的DNS欺骗实验失败经历
这是一个DNS欺骗实验,使用kali的ettercap.有受害者.攻击者(虚拟机).Web服务器三台机器.受害者的事124.16.70.105虚拟机的是124.16.71.48web服务器是124.1 ...
- Resolve conflict using "MERGE_HEAD (origin/HEAD)"
Git进行同步的时候,经常会出现冲突,有时候冲突的选项会有图示中的三种选项: 1.Resolved:直接把文件标识为冲突已经解决,一般是自己手动查看并解决完冲突以后使用. 2.Resolve conf ...