老子听懂了!!!!!

好感动!!!

不说多了:Keywords: 数位DP,二进制,异或。

“在信息学竞赛中,有一类与数位有关的区间统计问题。这类问题往往具有比较浓厚的数学味道,无法暴力求解,需要在数位上进行递推等操作。”——刘聪《浅谈数位类统计问题》

这类问题往往需要一些预处理,这就用到了数位DP

例题:不要62

需要统计区间[l,r]的满足题意的数的个数,这往往可以转换成求[0,r]-[0,l)

基本思想与方法

有了上述性质,我们就可以从高到低枚举第一次<n对应位是哪一位。

这样之前的位确定了,之后的位就不受n的限制即从00...0~99...9,可以先预处理,然后这时就可以直接统计答案。

预处理F数组。

F[i,st] 代表 位数为i(可能允许前导0。如00058也是个5位数),状态为st的方案数。这里st根据题目需要确定。

如i=4,f[i,st]也就是0000~9999的符合条件的数的个数(十进制)

决策第i位是多少(such as 0~9)

F[i,st] = F[i,st] + f[i–1,st']

st'为相对应的状态

参照刚刚所说的基本思路。预处理f数组,然后统计[0,m] - [0,n).

f[i,j]代表开头是j的i位数中不含"62"或"4"的数有几个。

如f[2,6]包含60,61,63,65,66,67,68,69

for(i=;i<=;i++)//因为数据为1000000,所以预处理7位
for(j=;j<=;j++)//第i位
for(k=;k<=;k++)//第i-1位
if(j!=&&!(j==&&k==))f[i][j]+=f[i-][k];

接下来,怎么算出0-n和0-m区间的答案数呢?

用一个通用函数(Cal):

如456=f[][]+f[][]+f[][]+f[][]+f[][]//(为什么不枚举到5呢?因为再下一位枚举了)

           +f[][]+f[][]+f[][]+f[][]+f[][]//(就是这一位)

           +f[][]+f[][]+f[][]+f[][]+f[][]+f[][]+f[][].
具体代码如下:
#include<cstdio>//最右边是第一位
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int f[][];
int Cal(int k)//求1~k中有多少符合的数.
{
int len,digit[],i,j,ans=;
memset(digit,,sizeof(digit)),len=;//digit[i]为当前的某个数从右到左第i个位置的数是多少.
while(k>){digit[++len]=k%;k/=;}
for(i=len;i>=;i--)
{
for(j=;j<=digit[i]-;j++)//每一位只能到k的下一位,所以计算的数实际只能到k-1.所以Cal()中传数要加1.
{
if(j!=&&!(j==&&digit[i+]==))ans+=f[i][j];
}
if(digit[i]==||(digit[i]==&&digit[i+]==))break; //如果这一位本来就没法,则后面的情况报废
}
return ans;
}
int main()
{
int n,m,i,j,k;
memset(f,,sizeof(f));//f[i][j]为以j开始的且不含"62"和"4"位数为i的个数.
f[][]=;
for(i=;i<=;i++)
{
for(j=;j<=;j++)//第i位
{
for(k=;k<=;k++)//第i-1位
{
if(j!=&&!(j==&&k==))f[i][j]+=f[i-][k];
}
}
}
while()
{
scanf("%d %d",&n,&m);
if(n==&&m==)break;
printf("%d\n",Cal(m+)-Cal(n));//因为当前的Cal(k)是计算出从1到k-1的符合条件的数的个数,所以要计算n~m的个数要用Cal(m+1)-Cal(n).
}
return ;
}

变式模板题_P2657 [SCOI2009]windy数

这题还是很简单的啦(差点没做出来

个位打表大佬请离开(包括记搜),我这里讲的是DP!!!

首先Cal(b+1)-Cal(a),大家都懂吧(算了,复制一遍吧<<((因为当前的Cal(k)是计算出从1到k-1的符合条件的数的个数,所以要计算a~b的个数要用Cal(b+1)-Cal(a).))>>)

f[i][j]定义一样,以j开始的且符合条件的总位数为i的答案个数.(好绕啊)

预处理转移不用讲吧:f[i][j]+=f[i-1][k];(还是复制了)

有个小细节,每个一位数答案都为1,所以分f[1][j]=0.

重点讲讲不同之处(Cal函数):

显然位数比x要小的数字都是合法的都在[1,x)区间内,直接统计就行.(第一次加ans)

位数和x一样最高位的数字比x小的数字都是合法的都在[1,x)区间内直接统计就行(第二次加ans)

位数和x一样,最高位又和x一样我们从左到右扫一遍x各个位子上的数字大小然后枚举合法的该位子上的数[0,9]判断是否合法就行。(第三次加ans)

#include<bits/stdc++.h>
using namespace std;
int f[][];
int a,b;
int digit[],cnt,ans;
void init ()
{
for (int i=;i<=;i++) f[][i]=;
for (int i=;i<=;i++)
for (int j=;j<=;j++)
for (int k=;k<=;k++)
if(abs(j-k)>=)
f[i][j]+=f[i-][k];
}
int Cal(int x)
{
//freopen("a.in", "r", stdin);
memset(digit,,sizeof(digit));
ans=;
cnt=;
while(x)
{
digit[++cnt]=x%;
x/=;
}
//三种情况
for (int i=;i<cnt;i++)
for (int j=;j<=;j++)
ans+=f[i][j]; //在不到x位数前,所有情况符合。
for (int i=;i<digit[cnt];i++) ans+=f[cnt][i]; //x位数,最高位未到digit[cnt]。
for (int i=cnt-;i>=;i--)//x位数,最高位到digit[cnt]
{
for (int j=;j<digit[i];j++)
if(abs(j-digit[i+])>=)
ans+=f[i][j];
if(abs(digit[i]-digit[i+])<)
break;
}
//printf("%d\n",ans);
return ans;
}
void work()
{
cin>>a>>b;
cout<<Cal(b+)-Cal(a)<<'\n';
}
int main()
{
init();
work();
return ;
}

练习:P2602 [ZJOI2010]数字计数

同步题解

加油……

浅说——数位DP的更多相关文章

  1. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  2. bzoj1026数位dp

    基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...

  3. uva12063数位dp

    辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...

  4. HDU2089 不要62[数位DP]

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. 数位DP GYM 100827 E Hill Number

    题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...

  6. 数位dp总结

    由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...

  7. 数位DP入门

    HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...

  8. 数位DP之奥义

    恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...

  9. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

随机推荐

  1. Windows 编译libcurl(openssl+zlib)(使用VC编译)

    libcurl主要功能就是用不同的协议连接和沟通不同的服务器,如果使用HTTPS,需要OpenSSL libcurl https://curl.haxx.se/download.html 下载Sour ...

  2. 将RDL报表转换成RDLC报表的函数

    原文:将RDL报表转换成RDLC报表的函数 近日研究RDLC报表,发现其不能与RDL报表兼容,尤其是将RDL报表转换成RDLC报表.网上的资料贴出的的转换方式复杂且不切实际,遂决定深入研究.经研究发现 ...

  3. 实现:C#窗体中的文本框只能输入中文汉字,其他输入无效。问:正则表达式怎么用?

    原文:实现:C#窗体中的文本框只能输入中文汉字,其他输入无效.问:正则表达式怎么用? private void textBox1_KeyPress(object sender, KeyPressEve ...

  4. C#原子性运算 interlocked.compareExchanged

    缘起: 假设有一个类myClass, myclass里有一个count属性. 在多线程的环境下 每个线程中 直接使用count++,  如果两个线程并行执行时, 两个线程中的一个的结果会被覆掉, 非线 ...

  5. ELINK离线编程器常见问题

    Q1 编程器是否可以接JTAG JTAG接口已经包含SWD接口引脚,按以下引脚对应接线即可: SWDIO->目标板JTAG 的JTMS SWCLK->目标板JTAG 的JTCK Q2 PC ...

  6. Win8 Metro(C#)数字图像处理--2.49Zhang二值图像细化算法

    原文:Win8 Metro(C#)数字图像处理--2.49Zhang二值图像细化算法  [函数名称]   二值图像细化算法      WriteableBitmap ThinningProcess ...

  7. C#应用配置信息保存和读取

    //保存信息 SystemConfig.WriteConfigData(“字段名称”, “这里是需要保存的内容”); //读取信息 SystemConfig.GetConfigData(“字段名称”, ...

  8. UWP入门(七)--SplitView详解与页面跳转

    原文:UWP入门(七)--SplitView详解与页面跳转 官方文档,逼着自己用英文看,UWP开发离不开官方文档 1. SplitView 拆分视图控件 拆分视图控件具有一个可展开/可折叠的窗格和一个 ...

  9. 让您的应用兼容 Android Oreo

    不知不觉Android Oreo已经发布几个月时间了,你的应用开始使用最新平台了吗?在应用迁移过程中是否遇到了一些棘手问题?你的Android应用兼容Oreo如何呢? 我们应该都知道,每一次重大升级, ...

  10. Qt 使用 Google Breakpad 捕获程序崩溃报告(dump文件) good

    http://blog.csdn.net/GoForwardToStep/article/details/56685810