ignite分布式计算

在ignite中,有传统的MapReduce模型的分布式计算,也有基于分布式存储的并置计算,当数据分散到不同的节点上时,根据提供的并置键,计算会传播到数据所在的节点进行计算,再结合数据并置,相关联的数据存储在相同节点,这样可以避免在计算过程中涉及到大量的数据移动,有效保证计算的性能。

ignite分布式计算的主要特点如下:

特性 描述
自动部署 计算用到的类可以自动传播,而不需要在每个节点都部署相关的类,这个可以通过配置peerClassLoadingEnabled选项开启计算类的自动传播,但是缓存的实体类是无法自动传播的。
平衡加载 数据在加载之后会在集群中进行一个再平衡的过程,保证数据均匀分布在各个节点,当有计算在集群中执行的时候,可以根据提供的并置键定位到数据所在节点进行计算,也就是并置计算。
故障转移 当节点出现故障或者其它计算的时候,任务会自动转移到集群中的其他节点执行

1.分布式闭包:

Ignite计算网格可以对集群或者集群组内的任何闭包进行广播和负载平衡,包括纯Java的runnablescallables

闭包类型 功能
broadcast 将任务传播到部分指定节点或者全部节点
call/run 执行单个任务或者任务集
apply apply接收一个闭包和一个集合作为参数,生成与参数数量等量的任务,每个任务分别是将闭包应用在其中一个参数上,并且会返回结果集。

ComputeTestController.java


/** broadCast测试*/
@RequestMapping("/broadcast")
String broadcastTest(HttpServletRequest request, HttpServletResponse response) {
// IgniteCompute compute = ignite.compute(ignite.cluster().forRemotes()); //只传播远程节点
IgniteCompute compute = ignite.compute();
compute.broadcast(() -> System.out.println("Hello Node: " + ignite.cluster().localNode().id()));
return "all executed.";
} /** call和run测试 */
@RequestMapping("/call")
public @ResponseBody
String callTest(HttpServletRequest request, HttpServletResponse response) {
Collection<IgniteCallable<Integer>> calls = new ArrayList<>(); /** call */
System.out.println("-----------call-----------");
for(String word : "How many characters".split(" ")) {
calls.add(word::length);
// calls.add(() -> word.length());
}
Collection<Integer> res = ignite.compute().call(calls);
int total = res.stream().mapToInt(Integer::intValue).sum();
System.out.println(String.format("the total lengths of all words is [%s].", total)); /** run */
System.out.println("-----------run-----------");
for (String word : "Print words on different cluster nodes".split(" ")) {
ignite.compute().run(() -> System.out.println(word));
} /** async call */
System.out.println("-----------async call-----------");
IgniteCompute asyncCompute = ignite.compute().withAsync();
asyncCompute.call(calls);
asyncCompute.future().listen(fut -> {
Collection<Integer> result = (Collection<Integer>)fut.get();
int t = result.stream().mapToInt(Integer::intValue).sum();
System.out.println("Total number of characters: " + total);
}); /** async run */
System.out.println("-----------async run-----------");
Collection<ComputeTaskFuture<?>> futs = new ArrayList<>();
asyncCompute = ignite.compute().withAsync();
for (String word : "Print words on different cluster nodes".split(" ")) {
asyncCompute.run(() -> System.out.println(word));
futs.add(asyncCompute.future());
}
futs.stream().forEach(ComputeTaskFuture::get); return "all executed.";
} /** apply测试 */
@RequestMapping("/apply")
public @ResponseBody
String applyTest(HttpServletRequest request, HttpServletResponse response) {
/** apply */
System.out.println("-----------apply-----------");
IgniteCompute compute = ignite.compute();
Collection<Integer> res = compute.apply(
String::length,
Arrays.asList("How many characters".split(" "))
);
int total = res.stream().mapToInt(Integer::intValue).sum();
System.out.println(String.format("the total lengths of all words is [%s].", total)); /** async apply */
IgniteCompute asyncCompute = ignite.compute().withAsync();
res = asyncCompute.apply(
String::length,
Arrays.asList("How many characters".split(" "))
);
asyncCompute.future().listen(fut -> {
int t = ((Collection<Integer>)fut.get()).stream().mapToInt(Integer::intValue).sum();
System.out.println(String.format("Total number of characters: " + total));
}); return "all executed.";
}

2. MapReduce:

在ignite中MapReduce的实现是ComputeTask,其主要方法是map()和reduce(),map()可以控制任务映射到节点的过程,而reduce()则是对最终计算结果集的一个处理。ComputeTask有两个主要实现ComputeTaskAdapterComputeTaskSplitAdapter, 主要的区别在于ComputeTaskAdapter需要手动实现map()方法,而ComputeTaskSplitAdapter可以自动映射任务。

ComputeTaskAdapter

    /**ComputeTaskAdapter*/
@RequestMapping("/taskMap")
public @ResponseBody
String taskMapTest(HttpServletRequest request, HttpServletResponse response) {
/**ComputeTaskMap*/
int cnt = ignite.compute().execute(MapExampleCharacterCountTask.class, "Hello Ignite Enable World!"); System.out.println(String.format(">>> Total number of characters in the phrase is %s.", cnt)); return "all executed.";
} private static class MapExampleCharacterCountTask extends ComputeTaskAdapter<String, Integer> {
/**节点映射*/
@Override
public Map<? extends ComputeJob, ClusterNode> map(List<ClusterNode> nodes, String arg) throws IgniteException {
Map<ComputeJob, ClusterNode> map = new HashMap<>();
Iterator<ClusterNode> it = nodes.iterator();
for (final String word : arg.split(" ")) {
// If we used all nodes, restart the iterator.
if (!it.hasNext()) {
it = nodes.iterator();
}
ClusterNode node = it.next();
map.put(new ComputeJobAdapter() {
@Override
public Object execute() throws IgniteException {
System.out.println("-------------------------------------");
System.out.println(String.format(">>> Printing [%s] on this node from ignite job.", word));
return word.length();
}
}, node);
}
return map;
}
/**结果汇总*/
@Override
public Integer reduce(List<ComputeJobResult> results) throws IgniteException {
int sum = 0;
for (ComputeJobResult res : results) {
sum += res.<Integer>getData();
}
return sum;
}
}

运行结果:

-------------------------------------
>>> Printing [Ignite] on this node from ignite job.
-------------------------------------
>>> Printing [World!] on this node from ignite job.
>>> Total number of characters in the phrase is 23.

ComputeTaskSplitAdapter

    /**ComputeTaskSplitAdapter*/
@RequestMapping("/taskSplit")
public @ResponseBody
String taskSplitTest(HttpServletRequest request, HttpServletResponse response) {
/**ComputeTaskSplitAdapter(自动映射) */
int result = ignite.compute().execute(SplitExampleDistributedCompute.class, null);
System.out.println(String.format(">>> result: [%s]", result)); return "all executed.";
} private static class SplitExampleDistributedCompute extends ComputeTaskSplitAdapter<String, Integer> { @Override
protected Collection<? extends ComputeJob> split(int gridSize, String arg) throws IgniteException {
Collection<ComputeJob> jobs = new LinkedList<>();
jobs.add(new ComputeJobAdapter() {
@Override
public Object execute() throws IgniteException {
// IgniteCache<Long, Student> cache = Ignition.ignite().cache(CacheKeyConstant.STUDENT);
IgniteCache<Long, BinaryObject> cache = Ignition.ignite().cache(CacheKeyConstant.STUDENT).withKeepBinary();
/**普通查询*/
String sql_query = "name = ? and email = ?";
// SqlQuery<Long, Student> cSqlQuery = new SqlQuery<>(Student.class, sql_query);
SqlQuery<Long, BinaryObject> cSqlQuery = new SqlQuery<>(Student.class, sql_query);
cSqlQuery.setReplicatedOnly(true).setArgs("student_54", "student_54gmail.com");
// List<Cache.Entry<Long, Student>> result = cache.query(cSqlQuery).getAll();
List<Cache.Entry<Long, BinaryObject>> result = cache.query(cSqlQuery).getAll();
System.out.println("--------------------");
result.stream().map(x -> {
Integer studId = x.getValue().field("studId");
String name = x.getValue().field("name");
return String.format("name=[%s], studId=[%s].", name, studId);
}).forEach(System.out::println);
System.out.println(String.format("the query size is [%s].", result.size()));
return result.size();
}
});
return jobs;
} @Override
public Integer reduce(List<ComputeJobResult> results) throws IgniteException {
int sum = results.stream().mapToInt(x -> x.<Integer>getData()).sum();
return sum;
}
}

运行结果:

--------------------
name=[student_54], studId=[54].
the query size is [1].
>>> result: [1]

MapReduce的局限性:

MapReduce适合解决并行和批处理的场景,不适合串行,迭代和递归一类无法并行和分割任务的场景。

分布式计算存在的问题以及注意点
   在使用ignite的分布式计算功能的时候,如果用到了缓存, 并且缓存value不是平台类型(java基础类型),则需要考虑反序列化的问题。

现有两种解决方案:

  • 部署缓存实体类包到ignite节点

缓存实体类得实现Serializable接口,并且得指定serialVersionUID

serialVersionUID表示实体类的当前版本,每个实现Serializable接口的类都有,如果没有的设置该值,java序列化机制会帮你默认生成一个。最好在使用serializable接口时,设定serialVersionUID为某个值,不然当在传输的某一端修改实体类时,serialVersionUID会被虚拟机设置成一个新的值,造成两端的serialVersionUID不一致会发生异常。

public class Student implements Serializable {

    private static final long serialVersionUID = -5941489737545326242L;
....
}

将实体类打包成普通jar包,并放在$IGNITE_HOME/libs/路径下面:

注意:打包的时候不能打包成spring-boot的可执行包,要打包成普通jar包,这样相关类才能正常加载。当然如果集群里的节点均为应用节点,则可以不用考虑这个问题。

  • 使用二进制对象对缓存进行操作

    Ignite默认使用反序列化值作为最常见的使用场景,要启用BinaryObject处理,需要获得一个IgniteCache的实例然后使用withKeepBinary()方法。启用之后,如果可能,这个标志会确保从缓存返回的对象都是BinaryObject格式的。

 IgniteCache<Long, BinaryObject> cache = ignite.cache("student").withKeepBinary();
BinaryObject obj = cache.get(k); //获取二进制对象
String name = obj.<String>field("name"); //读取二进制对象属性值<使用field方法>

3.并置计算:

affinityCall(...)affinityRun(...)方法使作业和缓存着数据的节点位于一处,换句话说,给定缓存名字和关系键,这些方法会试图在指定的缓存中定位键所在的节点,然后在那里执行作业。

并置的两种类型以及区别:

并置 特点
数据并置 将相关的缓存数据并置到一起,确保其所有键会缓存在同一个节点上,避免节点间数据移动产生的网络开销。
计算并置 根据关系键和缓存名称,定位关系键所在节点,并在该节点执行作业单元。

ComputeTestController.class

    /**并置计算测试*/
@RequestMapping("/affinity")
public @ResponseBody
String affinityTest(HttpServletRequest request, HttpServletResponse response) { /** affinityRun call */
System.out.println("-----------affinityRun call-----------");
IgniteCompute compute = ignite.compute();
// IgniteCompute compute = ignite.compute(ignite.cluster().forRemotes());
for(int key = 0; key < 100; key++) {
// final long k = key;
//生成随机k值
final long k = IntStream.generate(() -> (int)(System.nanoTime() % 100)).limit(1).findFirst().getAsInt();
compute.affinityRun(CacheKeyConstant.STUDENT, k, () -> {
IgniteCache<Long, BinaryObject> cache = ignite.cache(CacheKeyConstant.STUDENT).withKeepBinary();
BinaryObject obj = cache.get(k);
if(obj!=null) {
System.out.println(String.format("Co-located[key= %s, value= %s]", k, obj.<String>field("name")));
}
});
} IgniteCache<Long, BinaryObject> cache = ignite.cache(CacheKeyConstant.STUDENT).withKeepBinary();
cache.forEach(lo -> compute.affinityRun(CacheKeyConstant.STUDENT, lo.getKey(), () -> {
System.out.println(lo.getValue().<String>field("name"));
})); return "all executed.";
}

运行结果:

-----------affinityRun call-----------
student_495
student_496
student_498
...

至此,ignite分布式计算完毕。

apache ignite系列(五):分布式计算的更多相关文章

  1. apache ignite系列(八):问题汇总

    1,java.lang.ClassNotFoundException Unknown pair 1.Please try to turn on isStoreKeepBinary in cache s ...

  2. apache ignite系列(六): 服务网格

    简介 ​ 服务网格本质上还是远程方法调用(RPC),而在ignite中注册的服务本质体现还是以cache的形式存在,集群中的节点可以相互调用部署在其它节点上的服务,而且ignite集群会负责部署服务的 ...

  3. apache ignite系列(三):数据处理(数据加载,数据并置,数据查询)

    ​ 使用ignite的一个常见思路就是将现有的关系型数据库中的数据导入到ignite中,然后直接使用ignite中的数据,相当于将ignite作为一个缓存服务,当然ignite的功能远不止于此,下面以 ...

  4. apache ignite系列(二):配置

    ignite有两种配置方式,一种是基于XML文件的配置,一种是基于JAVA代码的配置: 这里将ignite常用的配置集中罗列出来了,一般建议使用xml配置. 1,基于XML的配置 <beans ...

  5. apache ignite系列(一): 简介

    apache-ignite简介(一) 1,简介 ​ ignite是分布式内存网格的一种实现,其基于java平台,具有可持久化,分布式事务,分布式计算等特点,此外还支持丰富的键值存储以及SQL语法(基于 ...

  6. apache ignite系列(九):ignite调优

    1,配置文件调优 1.1 设置页面大小(pagesize) 先查看系统pagesiz,使用PAGE_SIZE或者PAGESIZE # getconf PAGE_SIZE 4096 # getconf ...

  7. apache ignite系列(九):使用ddl和dml脚本初始化ignite并使用mybatis查询缓存

    博客又断了一段时间,本篇将记录一下基于ignite对jdbc支持的特性在实际使用过程中的使用. 使用ddl和dml脚本初始化ignite 由于spring-boot中支持通过spring.dataso ...

  8. apache ignite系列(四):持久化

    ignite持久化与固化内存 1.持久化的机制 ignite持久化的关键点如下: ignite持久化可防止内存溢出导致数据丢失的情况: 持久化可以定制化配置,按需持久化; 持久化能解决在大量缓存数据情 ...

  9. Apache Kafka系列(五) Kafka Connect及FileConnector示例

    Apache Kafka系列(一) 起步 Apache Kafka系列(二) 命令行工具(CLI) Apache Kafka系列(三) Java API使用 Apache Kafka系列(四) 多线程 ...

随机推荐

  1. vue组件传值之$attrs、$listeners

    当有父组件A,子组件B,孙子组件C的时候 A-B B-C 的传值想必大家应该都非常熟悉了,通过props和$emit和$on来进行传值 那么A-C之间的传值要怎么做呢? 1.event.bus总线传值 ...

  2. 如何在GitHub上删除自己的项目?

    话不多说,直奔主题~ 1.打开GitHub,在主页左边有自己写的库. 2.拿删除第二个库wlh-hub/vue-zsgc为例,点击它,进入下面页面. 3.在导航栏一栏中,找到settings,并点击. ...

  3. ASP.NET Core MVC 之依赖注入 Controller

    ASP.NET Core MVC 控制器应通过构造函数明确地请求它们地依赖关系,在某些情况下,单个控制器地操作可能需要一个服务,在控制器级别上的请求可能没有意义.在这种情况下,也可以将服务作为  Ac ...

  4. warpAffine仿射变换

    仿射变换,其实就是不同的坐标系的相互转换,用于图像的平移和旋转. 首先看一下官方的api描述. https://docs.opencv.org/2.4/modules/imgproc/doc/geom ...

  5. 网页如何设置favicon.ico

    1.首先制作ico图,并命名favicon.ico 2.将文件放在项目的根目录下

  6. javascript——原型与继承

    一.什么是继承? 继承是面向对象语言的一个重要概念.许多面向对象语言都支持两种继承方式:接口继承和实现继承:接口继承只继承方法签名,而实现继承则继承实际的方法.由于函数没有签名,所以ECMAScrip ...

  7. Python模块之pysnooper

    一.简介 调试程序时,很多人喜欢直接用print来代替断点调试,而pysnooper模块比print更方便,以装饰器的形式存在 二.实验环境 操作系统:win10 python版本:python3.6 ...

  8. 数组的方法 forEach filter map slice splice

    目前一些数组的实用的方法 1 arr.splice(i,n) 删除从i(索引值)开始之后的那个元素.返回值是删除的元素,改变原数组: 参数: i 索引值      n 个数 let arr = [1, ...

  9. C#开发BIMFACE系列7 服务端API之获取文件信息列表

    系列目录     [已更新最新开发文章,点击查看详细] 本文详细介绍如何获取BIMFACE平台中所有上传过的文件信息列表. 请求地址:GET https://file.bimface.com/file ...

  10. 用户数从 0 到亿,我的 K8s 踩坑血泪史

    作者 | 平名 阿里服务端开发技术专家 导读:容器服务 Kubernetes 是目前炙手可热的云原生基础设施,作者过去一年上线了一个用户数极速增长的应用:该应用一个月内日活用户从零至四千万,用户数从零 ...