传送门:http://codeforces.com/contest/984/problem/C

这道题
题意:求q/p是否能用k进制有限表示小数点后的数;
 
思路:数学推理:
    1、首先把q/p化为最简形式。
    2、如果有限,相当于 q | p *k的n次 ,就是说p*k。。。*k后可以整除q
        (“|”—>整除 如3|12表示12能被3整除)
    3、因为p,q现在互质,所以就是k*k*k*k…*k后可以整除q,那么就是可以表示。
   4、上面3中的整除关系,还可以转为q的质因子全都是k的质因子。
    5、也就是说,每次我们把q除以gcd(q,k).直到gcd(q,k)==1;
    6、 如果q==1,说明4句成立,否则不成立;
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <list>
#include <iterator>
#include <cmath>
using namespace std; typedef long long ll; int n;
ll p,q,b; ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
int main(){
scanf("%d", &n);
while(n--)
{
scanf("%lld%lld%lld", &p, &q, &b);
ll tmp = gcd(p,q);
if(p==)
{
puts("Finite");
continue;
}
p/=tmp;q/=tmp;
tmp = gcd(q,b);
while(tmp!=)
{
while(q%tmp == )q/=tmp; //这不要加上while才不会tle
tmp = gcd(q,b);
}
if(q==)puts("Finite");
else puts("Infinite"); } return ;
}

codeforce#483div2C-Finite or not?数论,GCD的更多相关文章

  1. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  2. CF984 C. Finite or not?【数论/GCD】

    [链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...

  3. 假的数论gcd,真的记忆化搜索(Codeforce 1070- A. Find a Number)

    题目链接: 原题:http://codeforces.com/problemset/problem/1070/A 翻译过的训练题:https://vjudge.net/contest/361183#p ...

  4. cf C. Finite or not? 数论

    You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...

  5. 【cf 483 div2 -C】Finite or not?(数论)

    链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...

  6. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  7. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  8. HDU 1722 Cake (数论 gcd)(Java版)

    Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2 . 然后 ...

  9. 数论----gcd和lcm

    gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. ...

  10. hdu 5505(数论-gcd的应用)

    GT and numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

随机推荐

  1. Java的自动装箱/拆箱

    概述 自JDK1.5开始, 引入了自动装箱/拆箱这一语法糖, 它使程序员的代码变得更加简洁, 不再需要进行显式转换.基本类型与包装类型在某些操作符的作用下, 包装类型调用valueOf()方法将原始类 ...

  2. Java匹马行天下之J2EE框架开发——Spring—>用IDEA开发Spring程序(01)

    一.心动不如行动 一.创建项目 *注:在IDEA中我创建的Maven项目,不了解Maven的朋友可以看我之前的博客“我们一起走进Maven——知己知彼”,了解Maven后可以看我之前的博客“Maven ...

  3. 0R电阻在PCB布线中对布线畅通的一个小妙用

    在PCB布线中,我们都会尽量节约板子空间,将元器件排布的紧密一些,难免会遇到布线不通的时候. 博主下面就来说一个关于0R电阻在PCB布线使之畅通的一个小妙用. 使用0R电阻前 假设我们这个TXD的线周 ...

  4. mysql limit分页查询效率比拼

    1.直接使用数据库提供的SQL语句 limit M ,N SELECT * from message limit 0 , 10 ; -- 0.044 SELECT * from message lim ...

  5. Java中...的作用

    Java中...的作用,代表接收若干个相同类型的参数 public void testFunction(int...arr){    //接收若干个int类型的参数     for (int i:ar ...

  6. bytedance专题

    一 挑战字符串 1 无重复字符的最长子串(见leetcode bug free) 2 最长公共前缀(见leetcode bug free) 3 字符串的排列 给定两个字符串 s1 和 s2,写一个函数 ...

  7. 简述关于ASP.NET MVC与.NET CORE 的区别

    简述关于ASP.NET MVC与.NET CORE的区别1.关于ASP.NET 关于MVC刚开始接触这个技术的时候我经常不理解他们的名字,我相信许多学ASP.NET开发人员开始接触MVC应该也和我一样 ...

  8. J.U.C并发包(1)

    J.U.C并发包(1) AbstractQueuedSynchronizer AbstractQueuedSynchronizer是JUC并发包中锁的底层支持,AbstractQueuedSynchr ...

  9. SQL TRUNCATE TABLE 命令

    SQL TRUNCATE TABLE 命令 SQL TRUNCATE TABLE 命令用于删除现有数据表中的所有数据. 你也可以使用 DROP TABLE 命令来删除整个数据表,不过 DROP TAB ...

  10. 大白话5分钟带你走进人工智能-第35节神经网络之sklearn中的MLP实战(3)

    本节的话我们开始讲解sklearn里面的实战: 先看下代码: from sklearn.neural_network import MLPClassifier X = [[0, 0], [1, 1]] ...