#导入相应的包
import scipy
import scipy.cluster.hierarchy as sch
from scipy.cluster.vq import vq,kmeans,whiten
import numpy as np
import matplotlib.pylab as plt #生成待聚类的数据点,这里生成了20个点,每个点4维:
points=scipy.randn(20,4) #1. 层次聚类
#生成点与点之间的距离矩阵,这里用的欧氏距离:
disMat = sch.distance.pdist(points,'euclidean')
#进行层次聚类:
Z=sch.linkage(disMat,method='average')
#将层级聚类结果以树状图表示出来并保存为plot_dendrogram.png
P=sch.dendrogram(Z)
plt.savefig('plot_dendrogram.png')
#根据linkage matrix Z得到聚类结果:
cluster= sch.fcluster(Z, t=1, 'inconsistent') print "Original cluster by hierarchy clustering:\n",cluster #2. k-means聚类
#将原始数据做归一化处理
data=whiten(points) #codebook, distortion = kmeans(obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True) 
#输入obs是数据矩阵,行代表数据数目,列代表特征维度; k_or_guess表示聚类数目;iter表示循环次数,最终返回损失最小的那一次的聚类中心; 
#输出有两个,第一个是聚类中心(codebook),第二个是损失distortion,即聚类后各数据点到其聚类中心的距离的加和.
#k-means最后输出的结果其实是两维的,第一维是聚类中心,第二维是损失distortion,我们在这里只取第一维,所以最后有个[0]
centroid=kmeans(data,max(cluster))[0] #使用vq函数根据聚类中心对所有数据进行分类,vq的输出也是两维的,[0]表示的是所有数据的label
#vq(obs, code_book, check_finite=True) 
#根据聚类中心将所有数据进行分类.obs为数据,code_book则是kmeans产生的聚类中心. 
#输出同样有两个:第一个是各个数据属于哪一类的label,第二个和kmeans的第二个输出是一样的,都是distortion
label=vq(data,centroid)[0] print "Final clustering by k-means:\n",label

scipy 的K-means的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  4. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  5. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. 回归-LDA与QDA

    作者:桂. 时间:2017-05-23  06:37:31 链接:http://www.cnblogs.com/xingshansi/p/6892317.html 前言 仍然是python库函数sci ...

  7. [Scikit-learn] 1.2 Dimensionality reduction - Linear and Quadratic Discriminant Analysis

    Ref: http://scikit-learn.org/stable/modules/lda_qda.html Ref: http://bluewhale.cc/2016-04-10/linear- ...

  8. 小白眼中的AI之~Numpy基础

      周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode ...

  9. kmeans笔记

    1.算法过程 a.随机选取k个初始点作为中心点 b.依次计算剩余所有点分别与哪个初始点距离较近,则该点属于哪个簇 c.移动中心点到现在的簇的中心 d.重复b,c两步,直到中心点不再变化算法结束 2.优 ...

  10. Python Machine Learning: Scikit-Learn Tutorial

    这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...

随机推荐

  1. IIS7.5修改asp的文件上传限制方法

    第一.IIS7.5修改asp的文件上传限制方法 1.打开IIS 2.打开面板中的应用程序开发 asp 3.找到最后的限制属性 4.修改其中的最大请求实体主体限制的值:默认为200000字节,等于195 ...

  2. explor img file

    1, get offset # parted bone-debian----4gb.img GNU Parted 3.1 Using /workspace/bone-debian----4gb.img ...

  3. 图数据库Neo4j

    官网下载:https://neo4j.com/download/ 图数据库Neo4j入门:https://blog.csdn.net/gobitan/article/details/68929118 ...

  4. java集合(一)

  5. Exp0 Kali安装 Week1

    20165214 2018-2019-2 <网络对抗技术>Exp0 Kali安装 Week1 任务要求 Kali的下载.安装.共享.软件源. 步骤 1.从Kali的官网下载镜像文件.(直接 ...

  6. L360 Most People Spend Their Time in Just 25 Places

    Some people are always out on the town, going to concerts, restaurant openings, you name it. They're ...

  7. 用 Cobertura 测量测试覆盖率

      尽管测试先行编程(test-first programming)和单元测试已不能算是新概念,但测试驱动的开发仍然是过去 10 年中最重要的编程创新.最好的一些编程人员在过去半个世纪中一直在使用这些 ...

  8. 使用VS调试DUMP文件

    使用前准备: 1.保存编译文件的PDB文件(要和生成exe文件的对应) 2.在开发机器上,使用vs直接双击打开dmp文件,注意 进程名称 ,这个是程序运行crash的时候所在的目录位置,这个很重要. ...

  9. winform程序读取和改写配置文件App.config元素的值

    winform程序读取和改写配置文件App.config元素的值 2016-05-16 17:49 by newbirth, 2412 阅读, 0 评论, 收藏, 编辑 1 2 3 4 5 6 7 & ...

  10. 2018-软工机试-D-定西

    单点时限: 1.0 sec 内存限制: 256 MB 这么多年你一个人一直在走 方向和天气的节奏会让你忧愁 你说你遇见了一大堆奇怪的人 他们看上去好像都比你开心 ——李志<定西> 这首歌的 ...