一.随机数:RANDOM

  1.(0,1)小数:random.random()

  2.[1,10]整数:random.randint(1,10)

  3.[1,10)整数:random.randrang(1,10)

  4.(1,10)小数:random.uniform(1,10)

  5.单列集合随机选择一个:random,choice(item)

  6.单列集合随机选择n个:random.sample(item,n)

  7.洗牌单列集合:random.shuffle(item)

import random
def random_code(count):
code = ''
for i in range(count):
num = random.randint(1, 3)
if num == 1:
tag = str(random.randint(0, 9))
elif num == 2:
tag = chr(random.randint(65, 90))
else:
tag = chr(random.randint(97, 122))
code += tag
return code
print(random_code(6)) 产生指定位数的验证码

二.可以操作权限的处理文件模块

  1.基于路径的文件复制:shutil.copyfile('原文件','新文件')

  2.基于流的文件复制:

    with open('source_file','rb') as r,

    open('target_file','rb') as w

      shutil.copyfileeobj(r,w)

  3.递归删除目标目录

    shutil.rmtree('target_folder')

  4.文件移动:

    shutile.remove('old_file','new_file')

  5.文件夹压缩

    shutil.make_archive('file_name','format','achive_path')

  6.文件夹解压

    shutil.unpack_archive('unpack_file','unpack_name','format')

三.可以用字典存取数据到文件的序列化模块:shevle

  1.将序列化文件操作dump与load进行封装
    s_dic = shelve.open("target_file", writeback=True) # 注:writeback允许序列化的可变类型,可以直接修改值
  2.序列化::存
    s_dic['key1'] = 'value1'
    s_dic['key2'] = 'value2'
  3.反序列化:取
    print(s_dic['key1'])
  4.文件释放
   s_dic.close()

四.标准输入输出错误流

  sys.stdout.write('msg')
  sys.stderr.write('msg')
  msg = sys.stdin.readline()

  注:print默认是对sys.stdout.write('msg') + sys.stdout.write('\n')的封装
    格式化结束符print:print('msg', end='')

五.日志模块:logging

logging模块

什么是logging模块

logging模块是python提供的用于记录日志的模块

为什么需要logging

我们完全可以自己打开文件然后,日志写进去,但是这些操作重复且没有任何技术含量,所以python帮我们进行了封装,有了logging后我们在记录日志时 只需要简单的调用接口即可,非常方便!

日志级别

在开始记录日志前还需要明确,日志的级别

随着时间的推移,日志记录会非常多,成千上万行,如何快速找到需要的日志记录这就成了问题

解决的方案就是 给日志划分级别

logging模块将日志分为了五个级别,从高到低分别是:

1.info 常规信息

2.debug 调试信息

3.warning 警告信息

4.error 错误信息

5.cretical 严重错误

本质上他们使用数字来表示级别的,从高到低分别是10,20,30,40,50

logging模块的使用

#1.导入模块
import logging

#2.输出日志
logging.info("info")
logging.debug("debug")
logging.warning("warning")
logging.error("error")
logging.critical("critical")

#输出 WARNING:root:warning
#输出 ERROR:root:error
#输出 CRITICAL:root:critical

我们发现info 和 debug都没有输出,这是因为它们的级别不够,

默认情况下:

logging的最低显示级别为warning,对应的数值为30

日志被打印到了控制台

日志输出格式为:级别 日志生成器名称 日志消息

如何修改这写默认的行为呢?,这就需要我们自己来进行配置

自定义配置

import logging
logging.basicConfig()

"""可用参数
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
"""

#案例:
logging.basicConfig(
   filename="aaa.log",
   filemode="at",
   datefmt="%Y-%m-%d %H:%M:%S %p",
   format="%(asctime)s - %(name)s - %(levelname)s - %(module)s: %(message)s",
   level=10
)

格式化全部可用名称

%(name)s:Logger的名字,并非用户名,详细查看
%(levelno)s:数字形式的日志级别
%(levelname)s:文本形式的日志级别
%(pathname)s:调用日志输出函数的模块的完整路径名,可能没有
%(filename)s:调用日志输出函数的模块的文件名
%(module)s:调用日志输出函数的模块名
%(funcName)s:调用日志输出函数的函数名
%(lineno)d:调用日志输出函数的语句所在的代码行
%(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d:线程ID。可能没有
%(threadName)s:线程名。可能没有
%(process)d:进程ID。可能没有
%(message)s:用户输出的消息

至此我们已经可以自己来配置一 写基础信息了,但是当我们想要将同一个日志输出到不同位置时,这些基础配置就无法实现了,

例如 有一个登录注册的功能 需要记录日志,同时生成两份 一份给程序员看,一份给老板看,作为程序员应该查看较为详细的日志,二老板则应该简单一些,因为他不需要关心程序的细节

要实现这样的需要我们需要系统的了解loggin模块

logging模块的四个核心角色

1.Logger 日志生成器 产生日志

2.Filter 日志过滤器 过滤日志

3.Handler 日志处理器 对日志进行格式化,并输出到指定位置(控制台或文件)

4.Formater 处理日志的格式

一条日志完整的生命周期

1.由logger 产生日志 -> 2.交给过滤器判断是否被过滤 -> 3.将日志消息分发给绑定的所有处理器 -> 4处理器按照绑定的格式化对象输出日志

其中 第一步 会先检查日志级别 如果低于设置的级别则不执行

第二步 使用场景不多 需要使用面向对象的技术点 后续用到再讲

第三步 也会检查日志级别,如果得到的日志低于自身的日志级别则不输出

生成器的级别应低于句柄否则给句柄设置级别是没有意义的,

例如 handler设置为20 生成器设置为30

30以下的日志压根不会产生

第四步 如果不指定格式则按照默认格式

logging各角色的使用(了解)

# 生成器
logger1 = logging.getLogger("日志对象1")

# 文件句柄
handler1 = logging.FileHandler("log1.log",encoding="utf-8")
handler2 = logging.FileHandler("log2.log",encoding="utf-8")

# 控制台句柄
handler3 = logging.StreamHandler()


# 格式化对象
fmt1 = logging.Formatter(
   fmt="%(asctime)s - %(name)s - %(levelname)s: %(message)s",
   datefmt="%m-%d %H:%M:%S %p")
fmt2 = logging.Formatter(
   fmt="%(asctime)s - %(levelname)s : %(message)s",
   datefmt="%Y/%m/%d %H:%M:%S")

# 绑定格式化对象与文件句柄
handler1.setFormatter(fmt1)
handler2.setFormatter(fmt2)
handler3.setFormatter(fmt1)

# 绑定生成器与文件句柄
logger1.addHandler(handler1)
logger1.addHandler(handler2)
logger1.addHandler(handler3)

# 设置日志级别
logger1.setLevel(10)    #生成器日志级别
handler1.setLevel(20)   #句柄日志级别

# 测试
logger1.debug("debug msessage")
logger1.info("info msessage")
logger1.warning("warning msessage")
logger1.critical("critical msessage")

到此我们已经可以实现上述的需求了,但是这并不是我们最终的实现方式,因为每次都要编写这样的代码是非常痛苦的

logging的继承(了解)

可以将一个日志指定为另一个日志的子日志 或子孙日志

当存在继承关系时 子孙级日志收到日志时会将该日志向上传递

指定继承关系:

import  logging

log1 = logging.getLogger("mother")
log2 = logging.getLogger("mother.son")
log3 = logging.getLogger("mother.son.grandson")

# handler
fh = logging.FileHandler(filename="cc.log",encoding="utf-8")
# formatter
fm = logging.Formatter("%(asctime)s - %(name)s -%(filename)s - %(message)s")

# 绑定
log1.addHandler(fh)
log2.addHandler(fh)
log3.addHandler(fh)
# 绑定格式
fh.setFormatter(fm)
# 测试
# log1.error("测试")
# log2.error("测试")
log3.error("测试")
# 取消传递
log3.propagate = False
# 再次测试
log3.error("测试")

通过字典配置日志模块(重点)

每次都要编写代码来配置非常麻烦 ,我们可以写一个完整的配置保存起来,以便后续直接使用

import logging.config
logging.config.dictConfig(LOGGING_DIC)
logging.getLogger("aa").debug("测试")

LOGGING_DIC模板

standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字

simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'

id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
logfile_path = "配置文件路径"

LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5, #日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
},
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'aa': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
},
}

补充:

getLogger参数就是对应字典中loggers的key , 如果没有匹配的key 则返回系统默认的生成器,我们可以在字典中通过空的key来将一个生成器设置为默认的

'loggers': {
  # 把key设置为空
       '': {
           'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
           'level': 'DEBUG',
           'propagate': True,  # 向上(更高level的logger)传递
      },
  },

,往后在使用时可以这调用模块提供的函数,来输出日志

logging.info("测试信息!")

另外我们在第一次使用日志时并没有指定生成器,但也可以使用,这是因为系统有默认的生成器名称就叫root

最后来完成之前的需求:

有一个登录注册的功能 需要记录日志,同时生成两份 一份给程序员看,一份给老板看,作为程序员应该查看较为详细的日志,二老板则应该简单一些,因为他不需要关心程序的细节

# 程序员看的格式
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                 '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
logfile_path1 = "coder.log"

# 老板看的格式
simple_format = '[%(levelname)s][%(asctime)s]%(message)s'
logfile_path2 = "boss.log"


LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'std': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path1, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5, #日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
},
'boss': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'simple',
'filename': logfile_path2, # 日志文件
'maxBytes': 1024 * 1024 * 5, # 日志大小 5M
'backupCount': 5, # 日志文件最大个数
'encoding': 'utf-8', # 日志文件的编码
}
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'aa': {
'handlers': ['std', 'console',"boss"], # 这里把上面定义的handler都加上,即log数据会同时输出到三个位置
'level': 'INFO',
'propagate': True, # 向上(更高level的logger)传递
},
},
}
 

Day 18 常用模块(二)的更多相关文章

  1. 十八. Python基础(18)常用模块

    十八. Python基础(18)常用模块 1 ● 常用模块及其用途 collections模块: 一些扩展的数据类型→Counter, deque, defaultdict, namedtuple, ...

  2. 常用模块二(hashlib、configparser、logging)

    阅读目录 常用模块二 hashlib模块 configparse模块 logging模块   常用模块二 返回顶部 hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SH ...

  3. python14 常用模块 二

    一.json模块 强大:不同语言之间可以进行数据交换 序列化:把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serializati ...

  4. python之常用模块二(hashlib logging configparser)

    摘要:hashlib ***** logging ***** configparser * 一.hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 摘要算法 ...

  5. 18 常用模块 random shutil shevle logging sys.stdin/out/err

    random:随机数 (0, 1) 小数:random.random() ***[1, 10] 整数:random.randint(1, 10) *****[1, 10) 整数:random.rand ...

  6. Python自动化开发 - 常用模块(二)

    本节内容 1.shutil模块 2.shelve模块 3.xml处理模块 4.configparser模块 5.hashlib模块 6.subprocess模块 7.re模块 一.shutil模块 高 ...

  7. python之路----常用模块二

    collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict. ...

  8. Python常用模块二

    一.time & datetime #_*_coding:utf-8_*_ import time # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了t ...

  9. Python常用模块(二)

    一.json与pickle json与pickle模块是为了完成数据的序列化. 序列化是指把对象(变量)从内存中变成可存储或传输的过程,在Python中叫picking,在其他语言中也由其他的叫法,但 ...

随机推荐

  1. Swing学习2——图标添加Icon接口使用

    废话没有,看代码. 主要就是通过实现Icon接口在标签添加一个圆形图标,并在框架中显示. package com.sword.swing_test; import javax.swing.*; imp ...

  2. neutron基础一(网络基本命令)基本命令,包括veth peer

    ip addr ip link tcpdump -i veth1 -e -v route -n ip route arp ethtool -S veth0 ip link add type veth ...

  3. Linux 驱动——Button8(输入子系统)

    输入子系统由驱动层.输入子系统核心.事件处理层三部分组成.一个输入事件,如鼠标移动.键盘按下等通过Driver->Inputcore->Event handler->userspac ...

  4. Python SyntaxError: invalid token

    python命名不能以数字开头,import时会报错

  5. xcode10 出现iPhone has denied the launch request

    一般的处理这里不介绍,只要介绍因为证书的问题导致这个原因的.我的现象是,模拟器可以,iOS12以下设备可以,证书全部更新了一遍,只有一个没更新,还真是那个没更新的问题. 从钥匙串查看自己的证书配置,看 ...

  6. H5中用postMessage传递数据,解决localStorage不能跨域问题

    localStorage不能跨域,所以在A域名下用localStorage.YourKey方式存储的值,在B域名下是不能取到的. 所以需要转变思路,目前主要使用的两种方式: 一种方式:在A.B两个页面 ...

  7. kettle并行运行时出现「Unknown error in KarafBlueprintWatcher」

    背景:在使用kettle 6进行大量数据并行抽取时,偶尔会出现「Unknown error in KarafBlueprintWatcher」的错误,详细的报错信息可以查看下面的代码块. ERROR: ...

  8. Python相关

    当Python源码编译以后,需要对一些依赖库重新安装,而且有些是要用pip去安装. python 文件.目录属性的操作os.path等os模块函数 https://blog.csdn.net/bytx ...

  9. UVa——1600(巡逻机器人)

    迷宫求最短路的话一般用bfs都可以解决,但是这个加了个状态,那么就增加一个维度,用来判断k的值.比较简单的三维bfs.写搜索题的话一定要注意细节.这个题花了好长的时间.因为k的原因,一开始用了k的原因 ...

  10. uniapp如何将微信小程序API封装为Promise

    var SYNC_API_RE = /requireNativePlugin|upx2px|hideKeyboard|canIUse|^create|Sync$|Manager$/; var CALL ...