-- coding: utf-8 --

import scrapy

from jobscrawler_qianchengwuyou.items import JobscrawlerQianchengwuyouItem

class QianchengSpiderSpider(scrapy.Spider):

name = 'qiancheng_spider'

# allowed_domains = ['www.qq.com']

start_urls = [

#关键字数据分析

'https://search.51job.com/list/000000,000000,0000,00,9,99,%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E5%B8%88,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='

    #关键字数据挖掘
'https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE%25E6%258C%2596%25E6%258E%2598,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=' #关键字算法
'https://search.51job.com/list/000000,000000,0000,00,9,99,%25E7%25AE%2597%25E6%25B3%2595,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=' #关键字机器学习
'https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%259C%25BA%25E5%2599%25A8%25E5%25AD%25A6%25E4%25B9%25A0,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=' #关键字深度学习
'https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%25B7%25B1%25E5%25BA%25A6%25E5%25AD%25A6%25E4%25B9%25A0,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=' #关键字人工智能
'https://search.51job.com/list/000000,000000,0000,00,9,99,%25E4%25BA%25BA%25E5%25B7%25A5%25E6%2599%25BA%25E8%2583%25BD,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='
]
#以上是第一步,获取搜索到这些关键字的都有哪些url
#第二步骤,这些个检索页,下面有很多页,要翻页,每一页中的每个详情页的里面的数据
#那么首先我们要先写提取一个页面当中的url(每一个详情页的url),这应该是一个a标签 def parse(self, response):
xpath="//div[@class='el']" #这里面要过滤筛选一下用这个xpth获得
items = response.xpath(xpath); #这里面获得是不满足条件的el标签
print(items)
for item in items:
#遍历一下这个items,把不符合需求的过滤掉
# 如何去过滤呢?也就是说如何选择下面这个if的条件呢,我们来看看原始网页代码的特点
#观察之后我们发现每一个t1标签前面还都有一个p标签,t1后面还有一个空格
if not len(item.xpath("./p[@class='t1 ']")):
continue
#一个点表示当前节点#p标签 t1 (这里有个空格)#这部分为这么这样写我不是特别明白
#也就是说我在上面这个items下面我再查找,有没有"p标签",有没有class等于‘t1空格’
url = item.xpath("./p[@class='t1 ']//a/@href").extract_first()#这里获得是详情页的全部内容
#./p[@class='t1 '#照抄,因为他下面只有一个“a标签”,获取他下面全部内容@
#href属性,
yield scrapy.Request(url, callback=self.detail_parse)
#下面开始是想得到他的翻页行为
next_page_url = response.xpath("//a[@id='rtNext']/@href").extract_first()
if not next_page_url is None:
yield scrapy.Request(next_page_url, callback=self.parse)
def detail_parse(self,response):
item = JobscrawlerQianchengwuyouItem()
# 招聘名称
item["job_name"] = response.xpath("//div[@class='cn']/h1/text()").extract_first().strip()
# 可以获得没有白空格的job_name # 职位信息
item["job_info"] = "".join(response.xpath("//div[@calss='bmsg job_msg inbox']//text()").extract()).strip()
# 薪资
item["job_salary"] = "".join(response.xpath('//div[@class="sp4"]/text()').extract()).strip()
# 职位福利
item["job_welfare"] = ",".join(response.xpath("//span[@class='sp4']/text()").extract())
#item["job_welfare"] = response.xpath("//span[@class='sp4']/text()这样会获得一个列表,但是我们需要的是一个字符串
# 经验要求
item["job_exp_require"] = response.xpath('//p[@class="msg ltype"]/text()').extract()[1].strip()
item["job_edu_require"] = response.xpath('//p[@class="msg ltype"]/text()').extract()[2].strip() # 学历要求#获取详情页的细节信息
# 公司名称
item["company_name"] = response.xpath('//div[@class="com_msg"]//p/text').extract_first().strip()
# 公司行业
# 公司性质
itme["company_industry"] = "".join(response.xpath('//span[@class="i_trade"]/../text()').extract()).strip()
item["company_nature"] = "".join(response.xpath('//span[@class="i_flag"]/../text()').extract()).strip()
#“..(点点)”的意思是我希望定位到父标签的text,但是定位不到父标签,能定位到子标签同一级的标签,然后通过子标签点点,就可以了
#"".join(....)意思是得到的是一个列表,join一下,就加到前面的“”当中去了,就变成str格式了
#这里如果希望把所有的白空格都处理掉的话,就需要for循环,但是数据量比较大,就把收尾的白空格去掉就可以了
# 公司人数
item["company_people"] = "".join(response.xpath('//span[@class="i_people"]/../text()').extract()).strip()
# 公司地址
item["company_location"] = ""
# 公司概况
item["company_overview"] = "".join(response.xpath('//div[@class="tmsg inbox"]//text()').extract()).strip() # 公司融资阶段
item["company_financing_stage"] = ""
yield item

from jobscrawler_qianchengwuyou.items import JobscrawlerQianchengwuyouItem的更多相关文章

  1. # -*- coding: utf-8 -*-

    -- coding: utf-8 -- import scrapy from jobscrawler_qianchengwuyou.items import JobscrawlerQianchengw ...

  2. Scrapy框架的学习(6.item介绍以及items的使用(提前定义好字段名))转载https://blog.csdn.net/wei18791957243/article/details/86259688

      在Scrapy框架中的items.py的作用   1.可以预先定义好要爬取的字段     items.py import scrapy     class TencentItem(scrapy.I ...

  3. python from import 自定义模块

    from douban250.items import Douban250Item python import 自定义模块 (1)主程序与模块程序在同一目录下: 如下面程序结构: `-- src    ...

  4. Scrapy进阶知识点总结(三)——Items与Item Loaders

    一.Items 抓取的主要目标是从非结构化源(通常是网页)中提取结构化数据.Scrapy蜘蛛可以像Python一样返回提取的数据.虽然方便和熟悉,但Python缺乏结构:很容易在字段名称中输入拼写错误 ...

  5. scrapy框架之items项目

    Items 主要目标是从非结构化来源(通常是网页)提取结构化数据.Scrapy爬虫可以将提取的数据作为Python语句返回.虽然方便和熟悉,Python dicts缺乏结构:很容易在字段名称中输入错误 ...

  6. Scrapy持久化(items+pipelines)

    一.items保存爬取的文件 items.py import scrapy class QuoteItem(scrapy.Item): # define the fields for your ite ...

  7. Scrapy框架爬虫初探——中关村在线手机参数数据爬取

    关于Scrapy如何安装部署的文章已经相当多了,但是网上实战的例子还不是很多,近来正好在学习该爬虫框架,就简单写了个Spider Demo来实践.作为硬件数码控,我选择了经常光顾的中关村在线的手机页面 ...

  8. 利用scrapy和MongoDB来开发一个爬虫

    今天我们利用scrapy框架来抓取Stack Overflow里面最新的问题(),并且将这些问题保存到MongoDb当中,直接提供给客户进行查询. 安装 在进行今天的任务之前我们需要安装二个框架,分别 ...

  9. Python之路【第二十三篇】爬虫

    difference between urllib and urllib2 自己翻译的装逼必备 What is the difference between urllib and urllib2 mo ...

随机推荐

  1. Java链接MySQL数据库的配置文件

    文件名:db.properties(随便) driver = com.mysql.jdbc.Driver  //MySQL数据库驱动名url = jdbc:mysql://localhost:3306 ...

  2. python 之生成器的介绍

    # 用生成器(generators)方便地写惰性运算 def double_numbers(iterable): for i in iterable: yield i + i # 生成器只有在需要时才 ...

  3. mongodb常用查询语句

    1.查询所有记录db.userInfo.find();相当于:select* from userInfo; 2.查询去掉后的当前聚集集合中的某列的重复数据db.userInfo.distinct(&q ...

  4. js中call()的用法

    A.call(B,x,y) 1`改变函数A的this指向,使之指向B; 2` 把A函数放到B中运行,x和y是A函数的参数. //父类 Person     function Person() {   ...

  5. javascript 之 面向对象【创建对象】

    创建对象 (1) 工厂模式 function createPerson(name, age, job){ var o = new Object(); o.name = name; o.age = ag ...

  6. UVA10163 Storage Keepers (动态规划)

    $dp[i][j]$表示前$i$个仓库由前$j$个人来守卫能取得的最大安全值: $cost[i][j]$表示前$i$个仓库由前$j$个人来守护在能取得的最大安全值的情况下的最小花费. AC代码 //# ...

  7. php 发邮件的2种方式(使用stmp类、使用socket协议)

    方式1:使用stmp类发送邮件 代码: stmp.php <?php header("Content-Type: text/html; charset=utf-8"); cl ...

  8. Jmeter 获取系统时间,和对系统时间进行增减时间

    今天做了一个测试,比如发送短信验证码之后的, 验证90s被验证码有效的问题 那如何测试开发的代码,判断了90s内有效呢1. 验证码获取时间距离现在89秒,验证通过2. 验证码获取时间距离现在90秒,验 ...

  9. 牛客 黑龙江大学程序设计竞赛重现 19-4-25 D

    题意: n项工作 1~n  工时s[i] ~e[i], 工时有覆盖的工作不能被同一台机器同时操作, 问完成所有工作的最少机器数 思路:前缀差分和 e.g. a            2 3 4    ...

  10. 第一章 Java语言概述1

    1.人机交互有两种方法:一种是图形化界面,一种是命令行方式 2.如何打开命令行:开始-在运行命令行中输入cmd 3.常用的DOS命令: dir(directory):列出当前目录下文件及文件夹 md( ...