一直性Hash算法在很多场景下都有应用,尤其是在分布式缓存系统中,经常用其来进行缓存的访问的负载均衡,比如:redis等<k,v>非关系数据库作为缓存系统。我们首先来看一下采用取模方式进行缓存的问题。

一致性Hash算法的使用场景

假设我们的将10台redis部署为我们的缓存系统,存储<k,v>数据,存储方式是:hash(k)%10,用来将数据分散到各个redis存储系统中。这样做,最大的问题就在于:如果此缓存系统扩展(比如:增加或减少redis服务器的数量),节点故障宕机等将会带来很高的代价。比如:我们业务量增大了,需要扩展我们的缓存系统,再增加一台redis作为缓存服务器,那么后来的数据<k,v>的散列方式变为了:hash(k)%11。我们可以看到,如果我们要查找扩展之前的数据,利用hash(k)%11,则会找不到对应的存储服务器。所以这个时候大量的数据失效了(访问不到了)。
这时候,我们就要进行数据的重现散列,如果是将redis作为存储系统,则需要进行数据迁移,然后进行恢复,但是这个时候就意味着每次增减服务器的时候,集群就需要大量的通信,进行数据迁移,这个开销是非常大的。如果只是缓存,那么缓存就都失效了。这会形成缓存击穿,导致数据库压力巨大,可能会导致应用的崩溃。

一致性Hash算法的原理

因为对于hash(k)的范围在int范围,所以我们将0~2^32作为一个环。其步骤为:
1,求出每个服务器的hash(服务器ip)值,将其配置到一个 0~2^n 的圆环上(n通常取32)。
2,用同样的方法求出待存储对象的主键 hash值,也将其配置到这个圆环上,然后从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。
其分布如图:

这是一致性hash算法的基本原理,接下来我们看一下,此算法是如何解决 我们上边 说的 缓存系统的扩展或者节点宕机导致的缓存失效的问题。比如:再加入一个redis节点:

如上图,当我们加入redis node5之后,影响的范围只有黄色标出的那部分,不会造成全局的变动。

除了上边的优点,其实还有一个优点:对于热点数据,如果发现node1访问量明显很大,负载高于其他节点,这就说明node1存储的数据是热点数据。这时候,为了减少node1的负载,我们可以在热点数据位置再加入一个node,用来分担热点数据的压力。
雪崩效应

接下来我们来看一下,当有节点宕机时会有什么问题。如下图:

如上图,当B节点宕机后,原本存储在B节点的k1,k2将会迁移到节点C上,这可能会导致很大的问题。如果B上存储的是热点数据,将数据迁移到C节点上,然后C需要承受B+C的数据,也承受不住,也挂了。。。。然后继续CD都挂了。这就造成了雪崩效应。
上面会造成雪崩效应的原因分析:
如果不存在热点数据的时候,每台机器的承受的压力是M/2(假设每台机器的最高负载能力为M),原本是不会有问题的,但是,这个时候A服务器由于有热点数据挂了,然后A的数据迁移至B,导致B所需要承受的压力变为M(还不考虑热点数据访问的压力),所以这个失败B是必挂的,然后C至少需要承受1.5M的压力。。。。然后大家一起挂。。。
所以我们通过上面可以看到,之所以会大家一起挂,原因在于如果一台机器挂了,那么它的压力全部被分配到一台机器上,导致雪崩。

怎么解决雪崩问题呢,这时候需要引入虚拟节点来进行解决。
虚拟节点

虚拟节点,我们可以针对每个实际的节点,虚拟出多个虚拟节点,用来映射到圈上的位置,进行存储对应的数据。如下图:

如上图:A节点对应A1,A2,BCD节点同理。这时候,如果A节点挂了,A节点的数据迁移情况是:A1数据会迁移到C2,A2数据迁移到D1。这就相当于A的数据被C和D分担了,这就避免了雪崩效应的发送,而且虚拟节点我们可以自定义设置,使其适用于我们的应用。

一致性哈希算法----nginx负载均衡器配置之一的更多相关文章

  1. Nginx 第三方模块的安装以及一致性哈希算法的使用

    Nginx 第三方模块的安装以及一致性哈希算法的使用 第三方模块安装方法总结: 以ngx_http_php_memcache_standard_balancer-master为例 1:解压 到 pat ...

  2. nginx系列12:一致性哈希算法

    前面一节的hash算法存在一个问题,当上游的应用服务器因某一台down掉导致服务器数量发生变化时,会导致大量的请求路由策略失效,一致性哈希算法可以缓解这个问题. 一致性哈希算法 1,hash算法存在的 ...

  3. 一致性哈希算法(Consistent Hashing) .

    应用场景 这里我先描述一个极其简单的业务场景:用4台Cache服务器缓存所有Object. 那么我将如何把一个Object映射至对应的Cache服务器呢?最简单的方法设置缓存规则:object.has ...

  4. Go -- 一致性哈希算法

    一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用 ...

  5. 一致性哈希算法与Java实现

    原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...

  6. 五分钟理解一致性哈希算法(consistent hashing)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法 ...

  7. 每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...

  8. 一致性哈希算法以及其PHP实现

    在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括:  轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Respons ...

  9. Java_一致性哈希算法与Java实现

    摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...

随机推荐

  1. Python内置函数(66)——vars

    英文文档: vars([object]) Return the __dict__ attribute for a module, class, instance, or any other objec ...

  2. 受到 1 万点暴击,二狗子被 DDoS 攻击的惨痛经历

    二狗子的遭遇 “好消息,好消息,免费 DDoS 攻击软件上线了,性感黑客在线攻击,帮您攻克所有商业难题.”二狗子不知道在看着什么网站,新买的 Mac 中发出热闹的声音. 二狗子想知道“DDoS 是什么 ...

  3. 说一说MVC的过滤器(一)

     在MVC项目中过滤器,最好把这些过滤器类放到一个文件夹中(Filters),然后过滤器文件的名称也是有规定的,格式应该为xxxAttribute,否则在控制器或控制器的方法中是无法进行调用过滤器的, ...

  4. 给vs2015添加EF

    今天做EF的小例子时,发现需要添加实体数据模型,但是不管怎么找在新建项中都找不到这个选项,这是怎么回事,于是就开始百度吧,有的说可能是VS安装时没有全选,也有的人说可能是重装VS时,没有将注册表清除, ...

  5. java~spring-ioc的使用

    spring-ioc的使用 IOC容器在很多框架里都在使用,而在spring里它被应用的最大广泛,在框架层面 上,很多功能都使用了ioc技术,下面我们看一下ioc的使用方法. 把服务注册到ioc容器 ...

  6. leetcode — path-sum

    /** * Source : https://oj.leetcode.com/problems/path-sum/ * * * Given a binary tree and a sum, deter ...

  7. 一文带你看透kubernetes 容器编排系统

    本文由云+社区发表 作者:turboxu Kubernetes作为容器编排生态圈中重要一员,是Google大规模容器管理系统borg的开源版本实现,吸收借鉴了google过去十年间在生产环境上所学到的 ...

  8. 系统开发中使用拦截器校验是否登录并使用MD5对用户登录密码进行加密

    项目名称:客户管理系统 项目描述: 项目基于javaEE平台,B/S模式开发.使用Struts2.Hibernate/Spring进行项目框架搭建.使用Struts中的Action 控制器进行用户访问 ...

  9. AppBoxFuture(三): 分而治之

      系统数据量达到一定程度后必将采用分库分表的方式来提高系统性能,但传统的分库分表方式也必将带来更高的开发复杂程度.新一代的NewSql及NoSql数据库由于天生的分布式存储基因,既保证了能够横向扩展 ...

  10. Java设计模式总结

    什么是设计模式   设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.通过对这些设计模式的合理使用能够是我们的系统更加的健壮. 六大设计原则 ...