1. 说明

本文基于:spark-2.4.0-hadoop2.7-高可用(HA)安装部署

2. 启动Spark Shell

  在任意一台有spark的机器上执行

 # --master spark://mini02:7077  连接spark的master,这个master的状态为alive,而不是standby
# --total-executor-cores 总共占用2核CPU
# --executor-memory 512m 每个woker占用512m内存
[yun@mini03 ~]$ spark-shell --master spark://mini02:7077 --total-executor-cores 2 --executor-memory 512m
-- :: WARN NativeCodeLoader: - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://mini03:4040
Spark context available as 'sc' (master = spark://mini02:7077, app id = app-20181125120746-0001).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.
/_/ Using Scala version 2.11. (Java HotSpot(TM) -Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information. scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@77e1b84c

注意:

  如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。

2.1. 相关截图

3. 执行第一个spark程序

  该算法是利用蒙特•卡罗算法求PI

 [yun@mini03 ~]$ spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://mini02:7077 \
--total-executor-cores \
--executor-memory 512m \
/app/spark/examples/jars/spark-examples_2.-2.4..jar
# 打印的信息如下:
-- :: WARN NativeCodeLoader: - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
-- :: INFO SparkContext: - Running Spark version 2.4.
………………
-- :: INFO TaskSetManager: - Finished task 97.0 in stage 0.0 (TID ) in ms on 172.16.1.14 (executor ) (/)
-- :: INFO TaskSetManager: - Finished task 98.0 in stage 0.0 (TID ) in ms on 172.16.1.13 (executor ) (/)
-- :: INFO TaskSetManager: - Finished task 99.0 in stage 0.0 (TID ) in ms on 172.16.1.14 (executor ) (/)
-- :: INFO TaskSchedulerImpl: - Removed TaskSet 0.0, whose tasks have all completed, from pool
-- :: INFO DAGScheduler: - ResultStage (reduce at SparkPi.scala:) finished in 3.881 s
-- :: INFO DAGScheduler: - Job finished: reduce at SparkPi.scala:, took 4.042591 s
Pi is roughly 3.1412699141269913
………………

4. Spark shell求Word count 【结合Hadoop】

1、启动Hadoop

2、将文件放到Hadoop中

 [yun@mini05 sparkwordcount]$ cat wc.info
zhang linux
linux tom
zhan kitty
tom linux
[yun@mini05 sparkwordcount]$ hdfs dfs -ls /
Found items
drwxr-xr-x - yun supergroup -- : /hbase
drwx------ - yun supergroup -- : /tmp
drwxr-xr-x - yun supergroup -- : /wordcount
-rw-r--r-- yun supergroup -- : /zookeeper-3.4..tar.gz
[yun@mini05 sparkwordcount]$ hdfs dfs -mkdir -p /sparkwordcount/input
[yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/.info
[yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/.info
[yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/.info
[yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/.info
[yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/input
Found items
-rw-r--r-- yun supergroup -- : /sparkwordcount/input/.info
-rw-r--r-- yun supergroup -- : /sparkwordcount/input/.info
-rw-r--r-- yun supergroup -- : /sparkwordcount/input/.info
-rw-r--r-- yun supergroup -- : /sparkwordcount/input/.info

3、进入spark shell命令行,并计算

 [yun@mini03 ~]$ spark-shell --master spark://mini02:7077 --total-executor-cores 2 --executor-memory 512m
# 计算完毕后,打印在命令行
scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, )).reduceByKey(_+_).sortBy(_._2, false).collect
res6: Array[(String, Int)] = Array((linux,), (tom,), (kitty,), (zhan,), ("",), (zhang,))
# 计算完毕后,保存在HDFS【因为有多个文件组成,则有多个reduce,所以输出有多个文件】
scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, )).reduceByKey(_+_).sortBy(_._2, false).saveAsTextFile("hdfs://mini01:9000/sparkwordcount/output")
# 计算完毕后,保存在HDFS【将reduce设置为1,输出就只有一个文件】
scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, )).reduceByKey(_+_, ).sortBy(_._2, false).saveAsTextFile("hdfs://mini01:9000/sparkwordcount/output1")

4、在HDFS的查看结算结果

 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/
Found items
drwxr-xr-x - yun supergroup -- : /sparkwordcount/input
drwxr-xr-x - yun supergroup -- : /sparkwordcount/output
drwxr-xr-x - yun supergroup -- : /sparkwordcount/output1
[yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/output
Found items
-rw-r--r-- yun supergroup -- : /sparkwordcount/output/_SUCCESS
-rw-r--r-- yun supergroup -- : /sparkwordcount/output/part-
-rw-r--r-- yun supergroup -- : /sparkwordcount/output/part-
-rw-r--r-- yun supergroup -- : /sparkwordcount/output/part-
-rw-r--r-- yun supergroup -- : /sparkwordcount/output/part-
[yun@mini05 sparkwordcount]$
[yun@mini05 sparkwordcount]$ hdfs dfs -cat /sparkwordcount/output/part*
(linux,)
(tom,)
(,)
(zhang,)
(kitty,)
(zhan,)
###############################################
[yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/output1
Found items
-rw-r--r-- yun supergroup -- : /sparkwordcount/output1/_SUCCESS
-rw-r--r-- yun supergroup -- : /sparkwordcount/output1/part-
[yun@mini05 sparkwordcount]$ hdfs dfs -cat /sparkwordcount/output1/part-
(linux,)
(tom,)
(,)
(zhang,)
(kitty,)
(zhan,)

spark-2.4.0-hadoop2.7-简单操作的更多相关文章

  1. spark编译安装 spark 2.1.0 hadoop2.6.0-cdh5.7.0

    1.准备: centos 6.5 jdk 1.7 Java SE安装包下载地址:http://www.oracle.com/technetwork/java/javase/downloads/java ...

  2. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

  3. spark sql的简单操作

    测试数据 sparkStu.text zhangxs chenxy wangYr teacher wangx teacher sparksql { ,"job":"che ...

  4. moloch1.8.0简单操作手册

    moloch1.8.0简单操作手册 Sessions 页面:Sessions主要通过非常简单的查询语言来构建表达式追溯数据流量,以便分析. SPIView 页面: SPIGraph页面:SPIGrap ...

  5. spark 1.1.0 单机与yarn部署

    环境:ubuntu 14.04, jdk 1.6, scala 2.11.4, spark 1.1.0, hadoop 2.5.1 一 spark 单机模式 部分操作参考:http://www.cnb ...

  6. Spark快速入门 - Spark 1.6.0

    Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首 ...

  7. Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN

    Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...

  8. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  9. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  10. Apache Spark 2.2.0 中文文档 - SparkR (R on Spark) | ApacheCN

    SparkR (R on Spark) 概述 SparkDataFrame 启动: SparkSession 从 RStudio 来启动 创建 SparkDataFrames 从本地的 data fr ...

随机推荐

  1. IntelliJ的Scala配置

    打开IDE: file->New->Project->Maven->Next 名字随便命名,到后面可以改的: 存放代码项目的位置,名字还是随便命名,可以改的,但是路径要自定义好 ...

  2. 【Spark篇】---Spark中Transformations转换算子

    一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Tra ...

  3. HashMap? ConcurrentHashMap? 相信看完这篇没人能难住你!

    前言 Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据. 本篇主要想讨论 ConcurrentHashMap 这样一个并发容器,在正式开始之前我觉得有必要谈谈 ...

  4. 为VIP解决问题时写的源码

    平时为学生们解决问题时,建立的项目源代码,方便大家学习与讨论. 开源DEMO列表 1. https://github.com/bfyxzls/student_orderBy 2. https://gi ...

  5. Python的魔法函数

    概要 如何定义一个类 类里通常包含什么 各个部分解释 类是怎么来的 type和object的关系 判断对象的类型 上下文管理器 类结构 #!/usr/bin/env python # -*- codi ...

  6. 【Java基础】【01初识Java】

    01.01_计算机基础知识(计算机概述)(了解) A:什么是计算机?计算机在生活中的应用举例 计算机(Computer)全称:电子计算机,俗称电脑.是一种能够按照程序运行,自动.高速处理海量数据的现代 ...

  7. Redis数据类型使用场景及有序集合SortedSet底层实现详解

    Redis常用数据类型有字符串String.字典dict.列表List.集合Set.有序集合SortedSet,本文将简单介绍各数据类型及其使用场景,并重点剖析有序集合SortedSet的实现. Li ...

  8. Zabbix3.0基础教程之二:item、trigger、action、graph配置

    一.Zabbix监控报警过程 在一次完整的Zabbix配置中,需要涉及到的术语有以下几项: 1.host groups:主机组,按生产需求将功能类别相近或相同的主机进行分组,便于管理. 2.host: ...

  9. 第一册:lesson 103.

    原文:The French text. How was the exam, Richard? Not too bad. I think I passed in English and Mathemat ...

  10. arcgis for js学习之Graphic类

    arcgis for js学习之Graphic类 <title>Graphic类</title> <meta charset="utf-8" /> ...