In James Munkres "Topology" Section 22, the quotient space is defined as below.

Definition Let \(X\) be a topological space, and let \(X^*\) be a partition of \(X\) into disjoint subsets whose union is \(X\). Let \(p: X \rightarrow X^*\) be the surjective map that carries each point of \(X\) to the element of \(X^*\) containing it. In the quotient topology induced by \(p\), the space \(X^*\) is called a quotient space of \(X​\).

The key factors in this definition are:

  1. According to section 3, the quotient space \(X^*\) as a partition of \(X\) is associated with a unique equivalence relation on \(X\). This equivalence relation specifies which points in the original space \(X\) will be treated as a same point in the new space \(X^*\).
  2. The quotient map \(p: X \rightarrow X^*\) for constructing the quotient topology on \(X^*\) introduces the concept of saturated sets, which are pre-images of subsets in \(X^*\). \(p\) ensures the image of any saturated open/closed set in \(X\) is still open/closed in \(X^*\).

With these concepts in mind, we can take paper folding and pasting as an example. Let the space \(X\) be a piece of paper. The equivalence classes on \(X\) determine which parts of this piece of paper will be pasted together. Meanwhile, the quotient map \(p\) collects the neighborhoods around every points in \(X\) that are to be pasted into a common point \(x_0\) in \(X^*\) and builds up a new neighborhood of \(x_0\) in \(X^*\). The neighborhoods of points in \(X\) are defined with respect to the subspace topology on \(X\), which is induced from the standard topology on \(\mathbb{R}^2\). The neighborhoods of points in \(X^*\) are defined with respect to the quotient topology on \(X^*\). That the quotient map \(p\) is surjective implies the whole paper is kept during the operations without cutting off any part. Hence, the obtained quotient space \(X^*​\) is just the piece of paper after these folding and pasting operations. The following figure illustrates the above metaphor of quotient space by folding a piece of rectangular paper into a cylinder.

Figure. Illustration of quotient space using the example of paper folding and pasting.

Metaphor of quotient space的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. Metaphor of topological basis and open set

    The definition of topological basis for a space $X$ requires that each point $x$ in $X$ is contained ...

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  5. Eclipse中启动tomcat报错java.lang.OutOfMemoryError: PermGen space的解决方法

    有的项目引用了太多的jar包,或者反射生成了太多的类,异或有太多的常量池,就有可能会报java.lang.OutOfMemoryError: PermGen space的错误, 我们知道可以通过jvm ...

  6. myeclipse 内存不够用报错PermGen space 和 An internal error has occurred.

    最近项目中又增加了新的模块,项目的代码又多了不少.运行的时候总是报如下错误 Exception in thread "http-apr-80-exec-6" java.lang.O ...

  7. java.lang.OutOfMemoryError: PermGen space及其解决方法

    PermGen space的全称是Permanent Generation space,是指内存的永久保存区域OutOfMemoryError: PermGen space从表面上看就是内存益出,解决 ...

  8. User space 与 Kernel space

    学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel space(内核空间). 简单说,Kernel space 是 Linux 内核的运行空间,User spa ...

  9. java.lang.OutOfMemoryError: PermGen space错误解决方法

    1. MyEclipse 中报 PermGen space       window--> preferences-->Myclipse-->Servers-->Tomcat- ...

随机推荐

  1. content-type 组件

    content-type初识 什么是content-type ContentType是Django的内置的一个应用,可以追踪项目中所有的APP和model的对应关系,并记录在ContentType表中 ...

  2. jdbc 连接各种数据库 CRUD

    一,jdbc简介 SUN公司为了简化.统一对数据库的操作,定义了一套Java操作数据库的规范(接口),称之为JDBC.这套接口由数据库厂商去实现,这样,开发人员只需要学习jdbc接口,并通过jdbc加 ...

  3. python_类与对象学习笔记

    class Phone: #手机属性===>类属性 # color='black' # price=4500 # brand='oppo' # size='5.5' #参数化-魔法方法--初始化 ...

  4. MongoDB分组查询,聚合查询,以及复杂查询

    准备数据 from pymongo import MongoClient import datetime client=MongoClient('mongodb://localhost:27017') ...

  5. 天猫魔盘在 deepin-linux中的使用

    新安装使用:deepin,但是我的dwa-131 usb 无线网卡驱动,没有安装成功,如下: develop@localhost:/media/develop/Backup$ lsusb Bus 00 ...

  6. Exp2 后门原理与实践 20164314 郭浏聿

    1.实践内容 (1)使用nc实现win,Linux间的后门连接. 热身 (2)使用netcat获取主机操作Shell,cron启动. (3)使用socat获取主机操作Shell, 任务计划启动. (4 ...

  7. Docker-----常见问题

    docker中删除dead状态的容器 其现象如下:docker ps -a docker rm ytn删除时报错如下:解决方法: 先查出其进程,kill掉,在进行删除 查 ,复制上图白底部分,用以下命 ...

  8. springmvc 开发流程图

  9. Leetcode-35.搜索插入位置

    题目描述: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引.如果目标值不存在于数组中,返回它将会被按顺序插入的位置. 你可以假设数组中无重复元素. 示例 1: 输入: [1,3,5,6 ...

  10. rsyncd启动脚本

    #!/bin/bash ############################################################## # File Name: -.sh # Versi ...