In James Munkres "Topology" Section 22, the quotient space is defined as below.

Definition Let \(X\) be a topological space, and let \(X^*\) be a partition of \(X\) into disjoint subsets whose union is \(X\). Let \(p: X \rightarrow X^*\) be the surjective map that carries each point of \(X\) to the element of \(X^*\) containing it. In the quotient topology induced by \(p\), the space \(X^*\) is called a quotient space of \(X​\).

The key factors in this definition are:

  1. According to section 3, the quotient space \(X^*\) as a partition of \(X\) is associated with a unique equivalence relation on \(X\). This equivalence relation specifies which points in the original space \(X\) will be treated as a same point in the new space \(X^*\).
  2. The quotient map \(p: X \rightarrow X^*\) for constructing the quotient topology on \(X^*\) introduces the concept of saturated sets, which are pre-images of subsets in \(X^*\). \(p\) ensures the image of any saturated open/closed set in \(X\) is still open/closed in \(X^*\).

With these concepts in mind, we can take paper folding and pasting as an example. Let the space \(X\) be a piece of paper. The equivalence classes on \(X\) determine which parts of this piece of paper will be pasted together. Meanwhile, the quotient map \(p\) collects the neighborhoods around every points in \(X\) that are to be pasted into a common point \(x_0\) in \(X^*\) and builds up a new neighborhood of \(x_0\) in \(X^*\). The neighborhoods of points in \(X\) are defined with respect to the subspace topology on \(X\), which is induced from the standard topology on \(\mathbb{R}^2\). The neighborhoods of points in \(X^*\) are defined with respect to the quotient topology on \(X^*\). That the quotient map \(p\) is surjective implies the whole paper is kept during the operations without cutting off any part. Hence, the obtained quotient space \(X^*​\) is just the piece of paper after these folding and pasting operations. The following figure illustrates the above metaphor of quotient space by folding a piece of rectangular paper into a cylinder.

Figure. Illustration of quotient space using the example of paper folding and pasting.

Metaphor of quotient space的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. Metaphor of topological basis and open set

    The definition of topological basis for a space $X$ requires that each point $x$ in $X$ is contained ...

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  5. Eclipse中启动tomcat报错java.lang.OutOfMemoryError: PermGen space的解决方法

    有的项目引用了太多的jar包,或者反射生成了太多的类,异或有太多的常量池,就有可能会报java.lang.OutOfMemoryError: PermGen space的错误, 我们知道可以通过jvm ...

  6. myeclipse 内存不够用报错PermGen space 和 An internal error has occurred.

    最近项目中又增加了新的模块,项目的代码又多了不少.运行的时候总是报如下错误 Exception in thread "http-apr-80-exec-6" java.lang.O ...

  7. java.lang.OutOfMemoryError: PermGen space及其解决方法

    PermGen space的全称是Permanent Generation space,是指内存的永久保存区域OutOfMemoryError: PermGen space从表面上看就是内存益出,解决 ...

  8. User space 与 Kernel space

    学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel space(内核空间). 简单说,Kernel space 是 Linux 内核的运行空间,User spa ...

  9. java.lang.OutOfMemoryError: PermGen space错误解决方法

    1. MyEclipse 中报 PermGen space       window--> preferences-->Myclipse-->Servers-->Tomcat- ...

随机推荐

  1. Hibernate对应关系(了解)

    布置的任务要用就写一下总结一下 hibernate有以下几种关系 一对一 一对多 多对一 多对多 首先这些对应关系是分单向和双向的 单向和双向有什么区别呢? 这个双向单向是面向对象的说法 意思就是你更 ...

  2. linux网络性能测试工具ipref安装与使用

    一.iperf工具安装 源码包下载地址:https://iperf.fr/iperf-download.php#archlinux 选择对应系统的版本就是解压安装了 完成 测试发现有问题 问题原因:L ...

  3. Day053--MySQL

    MySQL安装和基本管理https://www.cnblogs.com/majj/p/9160383.html 管理员模式运行cmd 打开终端,输入mysqld,打开服务端. 打开终端,输入mysql ...

  4. Centos6安装Percona-tools工具

    Centos6安装Percona-tools工具 环境:centos6.x yum -y install perl-DBI yum -y install perl-DBD-MySQL yum -y i ...

  5. head里两个重要标签base和meta

    base标签 <base href="../"> 我们并不常用的一个标签,但是一旦用得不当会带来灾难性的影响. 它会影响到所有页面上的href和src属性相对路劲的定位 ...

  6. Tomcat系列(4)——Tomcat 组件及架构详细部分

    核心部分   1. 定义 Tomcat 服务器是一个免费的开放源代码的Web 应用服务器,Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta ...

  7. axios传参

    get //通过给定的ID来发送请求 axios.get('/user?ID=12345') .then(function(response){ console.log(response); }).c ...

  8. ./runInstaller: Permission denied

    一:问题描述 安装oracle过程中出现 二:解决 /usr/local/Oracle11./database/runInstaller /usr/local/Oracle11./database/i ...

  9. 一次对JDK进行"减肥"的记录

    起因 最近做的一个小项目,因为要涉及到批量部署,每次在部署之前都需要在各个主机上先安装jdk环境(为了使用jdk自带的工具如jps等,所以没有单纯安装jre),但是因为jdk文件太大(以jdk-8u1 ...

  10. (Python3) 运行结果 = 10,40 的困扰我一顿饭时间的 代码

    a=10 b=30 def kzkzkz(a,b):   #定义一个函数 a=a+b return a b= kzkzkz(a,b) print(a,b)