2019/02/09 对于KinectFusion 的理解
网上有很多关于Kinect Fusion 的详细介绍,包括各个部分的算法,思路,以及应用上的限制和优化。 在此就不多介绍了。
KinectFusion 提供了非常基础的用RGB-D 相机实现的 Dense mapping algorithm. 在实验初期我也阅读了很多次。 最近由于实验上遇到了非常棘手的问题, 又把之前的资料拿出来再次仔细的阅读,希望能有新的发现。
1。 pcl::kinfu 和 pcl::kinfuLS.
找了相关的Libs 和 网上资料,但是并没有找到合适的代码资料和 demo code。
2。 ICP in KinFu
KinFu 使用point-to-plane ICP。
无论是Point-to-point 还是 Point-to-plane, 它都包括2个主要的步骤。
1。 find the corresponding points in adjacent frames.
2. establish and optimize the error func iteratively.
由于需要确定 corresponding points pair, KinFu 使用了另外两个约束方程:
1. 两帧图像上相关点的 T < transformation threshold.
2. 两帧图像上相关点的 Normal difference < Normal corresponding threshold.
正是由于这种找corresponding points 的算法, Kinfu 的ICP 只能用于运动距离比较小的tracking 应用。
所以,它提供的思路和算法并不能用于我的实验。
3。 TSDF Voxel model
由于我一直在用PCL::PointCloud, 所以在计算上我只用了CPU。 并且由于深度图像并不精确,每一帧深度点云存在很多误差。
所以我在思考能否用TSDF model 来优化我得到的3D 点云,并用RAYCAST 来计算摄像机的位移。
需要注意的是, 如果使用RAYCAST 投影点云, pcl::gpu::raycaster 提供的算法是应用于 3D voxel volume上的。
所以还是需要depth / 3d PCD -> 3D TSDF Voxel Volume -> Raycasted current View.
4。 点云边缘
PCL 提供的点云边缘是否能用于我的实验, 来优化追踪效果。
2019/02/09 对于KinectFusion 的理解的更多相关文章
- 2019.02.09 codeforces gym 100548F. Color(容斥原理)
传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...
- 2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)
传送门 题意简述:给出n堆花,对于第j堆,有f[j]朵花,每堆花的颜色不同,现在要从中选出s朵,求方案数. 思路: 假设所有花没有上限直接插板法,现在有了上限我们用容斥扣掉多算的 状压一下再容斥:fi ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
- 2019.02.09 bzoj4455: [Zjoi2016]小星星(容斥原理+dp)
传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi, ...
- 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)
传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
随机推荐
- Codeforces Round #422 (Div. 2)E. Liar sa+st表+dp
题意:给你两个串s,p,问你把s分开顺序不变,能不能用最多k段合成p. 题解:dp[i][j]表示s到了前i项,用了j段的最多能合成p的前缀是哪里,那么转移就是两种,\(dp[i+1][j]=dp[i ...
- Spring框架中的定时器 使用和配置
Spring框架中的定时器 如何使用和配置 转载自:<Spring框架中的定时器 如何使用和配置>https://www.cnblogs.com/longqingyang/p/554543 ...
- 从零开始搭建Webpack+react框架
1.下载node.js Node.js官网下载 , 安装: 安装成功后在控制台输入node -v 可查看当前版本: $ node -v v10.15.0 输入npm -v查看npm版本: $ npm ...
- TP5.0 PHPExcel 数据表格导出导入(原)
今天看的是PHPExcel这个扩展库,Comporse 下载不下来,最后只能自己去github里面手动下载,但有一个问题就是下载下来的PHPExcel没有命名空间,所以框架里面的use根本引入不进去, ...
- python web 2
思路整理 过程:请求豆瓣电影 top 250 url='https://movie.douban.com/' 结果:得到网页的html 源码 (保存为hml文件 就可以用浏览器打开) 提示: Loca ...
- spyder中让生成的图像单独在窗口中显示
IPython 支持两种形式的绘图 终端输出图像新窗口输出图像方式 1 能够非常方便的保存输出记录(如将`IPython 终端输出转换成 Html 文件) 方式 2 则可以交互式的放大.拖动图片,并且 ...
- Angular2 使用CLI创建新项目
1.安装node.js: 2. npm install -g @angular/cli 3.ng new projectName 4.ng serve PS:如果要使用moduleId,需先在src目 ...
- import com.sun.org.apache.xerces.internal.impl.dv.util.Base64报错
该类不属于JDK标准库范畴,但在JDK中包含了该类,可以直接使用.但是在eclipse中直接使用却找不到该类. 以下是解决方法步骤: Properties-->JavaBulid Path ...
- 前端基础之DOM和BOM
前端基础之DOM和BOM JavaScript分为 ECMAScript,DOM,BOM. BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScript 有能力与浏 ...
- 刷seed有感
今天又把seed刷了一遍 昨天去了基佬他们公司.第一次去他们公司.米虫科技,在重庆算是一家中型公司吧. 他去公司加班写一个游戏的封面,第一次感觉ui的不给设计图真的很坑.一个页面所有东西 自己凭感觉写 ...