AI - TensorFlow - 起步(Start)
01 - 基本的神经网络结构
输入端---》神经网络(黑盒)---》输出端
- 输入层:负责接收信息
- 隐藏层:对输入信息的加工处理
- 输出层:计算机对这个输入信息的认知
每一层点开都有它相应的内容,函数和功能。
一般来说, 神经网络(Neural Network)是一连串神经层所组成的把输入进行加工再输出的系统。
神经网络的加工处理:
特征(features)---》神经网络层加工---》代表特征(feature representation)---》神经网络层再次加工---》另一种代表特征......
也就是将一种代表特征转换成另一种代表特征,一次次特征之间的转换,也就是一次次的更有深度的理解。
代表特征通常只有计算机自己能够理解。
02 - 数据流图(data flow graphs)
TensorFlow是采用数据流图(data flow graphs)来计算,也就是说TensorFlow图(计算图或数据流图)是一种图数据结构。
首先创建一个数据流图,然后再将数据(以张量(tensor)的形式存在)放在数据流图中计算。
数据在输入层输入,在隐藏层加工处理,在输出层输出。
张量流经图,在每个节点由一个指令操控,一个指令的输出张量通常会变成后续指令的输入张量。
动图:https://www.tensorflow.org/images/tensors_flowing.gif
注意:这里演示图使用了梯度下降处理,梯度下降会对几个参数进行更新和完善,更新后的参数再次跑到隐藏层去学习,这样一直循环,直到结果收敛。
- 图中的节点(Nodes):表示数学操作,也就是指令
- 图中的线(edges):表示在节点间相互联系的多维数据数组, 即张量(tensor)
训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点,这就是TensorFlow名字的由来。
TensorFlow仅会根据相关节点的需求在需要时计算节点。
很多TensorFlow程序由单个图构成,但是TensorFlow程序可以选择创建多个图。
TensorFlow编程本质上是一个两步流程:
- 将常量、变量和指令整合到一个图中。
- 在一个会话中评估这些常量、变量和指令。
03 - 张量(Tensor)
在Tensorflow中,变量统一称作张量(Tensor)。
张量(Tensor)是任意维度的数组。
- 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howdy\' 或 5
- 1阶张量:向量 (vector)或矢量,也就是一维数组(一组有序排列的数),例如,[2, 3, 5, 7, 11] 或 [5]
- 2阶张量:矩阵 (matrix),也就是二维数组(有序排列的向量),例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]]
- 3阶张量:三维的矩阵,也就是把矩阵有序地叠加起来,成为一个“立方体”
- 以此类推,等等。
在大多数情况下,只会使用一个或多个低维张量(2阶及以下)。
典型 TensorFlow 程序中的大多数代码行都是指令,张量也是计算图中的一种指令。
张量可以作为常量或变量存储在图中。
- 常量是始终会返回同一张量值的指令,存储的是值不会发生更改的张量。
- 变量是会返回分配给它的任何张量的指令,存储的是值会发生更改的张量。
04 - 示例:处理结构
本例简单演示了在TensorFlow中如何用代码来运行搭建的结构:
# coding=utf-8
import tensorflow as tf
import numpy as np # 使用numpy创建数据
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' # ### 创建数据
x_data = np.random.rand(100).astype(np.float32) # 生成float32类型的100个随机数列
y_data = x_data * 0.1 + 0.3
# print("x_data:\n{} \ny_data:\n{}".format(x_data, y_data)) # ### 创建TensorFlow结构 开始###
# 搭建模型
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) # 定义权重变量:1维结构,随机数值范围为“-1.0”到“1.0”
biases = tf.Variable(tf.zeros([1])) # 定义偏差:初始值定义为0
# print("Weights:{}\nbiases:{}".format(Weights, biases))
y = Weights * x_data + biases # 预测的y值
# 计算误差
loss = tf.reduce_mean(tf.square(y - y_data)) # 计算误差:计算预测值y和真实值y_data的误差
# 传播误差(反向传递误差,使用优化器减少误差)
optimizer = tf.train.GradientDescentOptimizer(0.5) # 优化器使用梯度下降法(Gradient Descent)进行参数的更新,学习效率为0.5
train = optimizer.minimize(loss) # 使用优化器减少误差
# 激活Variable
init = tf.global_variables_initializer() # 必须初始化所有定义的Variable
# ### 创建TensorFlow结构 结束### # ### 训练
with tf.Session() as sess: # 创建会话
sess.run(init) # 用Session来执行init初始化步骤
for step in range(201):
sess.run(train) # 用Session来run每一次training的数据,逐步提升神经网络的预测准确性
if step % 20 == 0: # 每隔20次打印Weights和biases
print("Steps:{} Weights:{} Biases:{}".format(step, sess.run(Weights), sess.run(biases))) # ### 处理结构
# 在TensorFlow中必须先建立神经网络的结构, 才能放入数据,最终运行这个结构;
# 本例简单演示了在TensorFlow中如何用代码来运行搭建的结构;
05 - 示例:会话控制(Session)
# coding=utf-8
import tensorflow as tf
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' matrix1 = tf.constant([[3, 3]]) # 定义一个一行两列的矩阵常量
matrix2 = tf.constant([[2],
[2]]) # 定义一个两行一列的矩阵常量
print("matrix1: ", matrix1, "\nmatrix2: ", matrix2, ) product = tf.matmul(matrix1, matrix2) # 定义矩阵相乘(matrix multiply),但不进行计算 # 使用Session的形式 - 不推荐
sess = tf.Session() # 注意Session的首字母大写
result = sess.run(product) # 在Session中激活product并得到计算结果
print("result:", result)
sess.close() # 关闭session # 使用Session的形式 - 推荐
with tf.Session() as sess2:
result2 = sess2.run(product)
print("result2:", result2) # ### 会话控制(Session)
# 在TensorFlow中,Session是控制和输出文件的执行语句
# 运行session.run()可以获得运算结果, 或者控制运算
06 - 示例:变量(Variable)
# coding=utf-8
import tensorflow as tf
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' state = tf.Variable(6, name='counter') # 在TensorFlow中变量必须先被定义,变量counter的初始值值为6
print("tf.Variable(6, name='counter'):", state.name, state) one = tf.constant(1) # 定义常量one,值为1
print("tf.constant(1):", one) new_value = tf.add(state, one) # 定义加法步骤,但并没有直接计算
print("tf.add(state, one):", new_value)
update = tf.assign(state, new_value) # 加载new_value到state
print("tf.assign(state, new_value):", update) init = tf.global_variables_initializer() # 必须初始化变量! # 演示:在Session中完成变量和常量的相加
with tf.Session() as sess:
sess.run(init) # 在Session中激活变量
for _ in range(3):
sess.run(update) # 在Session调用前面定义的update
# print(state) # 无法打印出state内容
print(sess.run(state)) # 需要将Session的指针指向state,才能打印出state内容 # ### 变量(Variable)
# 定义语法: state = tf.Variable()
# 如果定义Variable, 就必须要initialize
07 - 示例:传入值(Placeholder)
# coding=utf-8
import tensorflow as tf
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' input1 = tf.placeholder(tf.float32) # 定义placeholder的type为float32
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2) # 将input1和input2做乘法运算(multiply)并输出为 output with tf.Session() as sess:
print(sess.run(output, feed_dict={input1: [8], input2: [2]})) # 需要传入的值放在feed_dict={},并一一对应每一个input # ### 传入值(Placeholder)
# placeholder是TensorFlow中的占位符,暂时储存变量;
# 使用tf.placeholder()可以从外部传入data到TensorFlow;
# 传输数据的形式为:“sess.run(***, feed_dict={input: **})”,也就是说通过sess.run()完成传值;
08 - 激励函数 (Activation Function,AF)
线性方程 (linear function)与非线性方程 (nonlinear function)
- 线性方程:一种代数方程,这种方程的图形为一直线,所以称为线性方程。
- 非线性方程:因变量与自变量之间的关系不是线性的关系。例如:平方关系、对数关系、指数关系、三角函数关系等等。求解非线性方程往往很难得到精确解,求解的基本方法是迭代法(逐渐接近精确解)。
激活函数 (activation function)
一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。
引入激励函数是为了解决日常生活中不能用线性方程所概括的问题。
激励函数(AF)其实就是另外一个非线性函数,比如说relu, sigmoid, tanh等,嵌套在原有的线性结果上,使得输出结果也具有了非线性的特征。
可以创造自己的激励函数(必须是可以微分的)来处理自己的问题。
在backpropagation误差反向传递的时,只有可微分的激励函数才能把误差传递回去。
常用选择
如果神经网络层只有两三层,那么对于隐藏层,可以使用任意的激励函数。
如果使用特别多层的神经网络,必须慎重选择激励函数,避免梯度爆炸、梯度消失的问题。
默认首选的激励函数:
- 在少量层结构中, 可以尝试多种不同的激励函数。
- 在卷积神经网络(Convolutional Neural Networks,CNN)的卷积层中, 推荐的激励函数是relu。
- 在循环神经网络(Recurrent Neural Networks,RNN)中,推荐的是tanh或者是relu。
官网信息
Tensorflow提供激励函数(Neural Network - Activation Functions):https://www.tensorflow.org/api_guides/python/nn
AI - TensorFlow - 起步(Start)的更多相关文章
- AI - TensorFlow - 示例03:基本回归
基本回归 回归(Regression):https://www.tensorflow.org/tutorials/keras/basic_regression 主要步骤:数据部分 获取数据(Get t ...
- AI - TensorFlow - 示例02:影评文本分类
影评文本分类 文本分类(Text classification):https://www.tensorflow.org/tutorials/keras/basic_text_classificatio ...
- AI - TensorFlow - 示例01:基本分类
基本分类 基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification Fash ...
- AI - TensorFlow - 过拟合(Overfitting)
过拟合 过拟合(overfitting,过度学习,过度拟合): 过度准确地拟合了历史数据(精确的区分了所有的训练数据),而对新数据适应性较差,预测时会有很大误差. 过拟合是机器学习中常见的问题,解决方 ...
- AI - TensorFlow - 分类与回归(Classification vs Regression)
分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归 ...
- AI - TensorFlow - 可视化工具TensorBoard
TensorBoard TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题. 可视化学习:https://www.tensorf ...
- AI - TensorFlow - 张量(Tensor)
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...
- AI - TensorFlow - 第一个神经网络(First Neural Network)
Hello world # coding=utf-8 import tensorflow as tf import os os.environ[' try: tf.contrib.eager.enab ...
- AI tensorflow MNIST
MNIST 数据 train-images-idx3-ubyte.gz:训练集图片 train-labels-idx1-ubyte.gz:训练集图片类别 t10k-images-idx3-ubyte. ...
随机推荐
- python tensorflow model
step01_formula # -*- coding: utf-8 -*- """ 단순 선형회귀방정식 : x(1) -> y - y = a*X + b (a ...
- Spark内核
一些名词概念 AM : ApplicationMaster RM : ResourceManager NM : NodeManager Backend : 后台 RpcEnv : RPC 进程和进程的 ...
- 小程序app.onLaunch中获取用户信息,index.onLoad初次载入时取不到值的问题
问题描述: //app.js App({ globalData:{ nickname:'' }, onLaunch: function () { let that=this; //假设已经授权成功 w ...
- FlashFXP用到的功能
FlashFXP目前用到的个人理解就是: 一个公共空间 大家同时连接进来可以共享文件进去(该软件支持从屏幕上直接拖拽文件进来) 这里面页面之类的可以用手机进行访问(有利于调试) 第一步接收师哥给的软 ...
- HCNA(华为)_DHCP篇
在大型的企业网络中,会有大量的主机或设备需要获取IP地址等网络参数.如果采用手工配置,工作量大 且不好管理,如果有用户擅自修改网络参数,还有可能会造成IP地址冲突等问题.使用动态主机配置协DHCP 来 ...
- JOISC2019 游记
JOISC2019 游记 Day 1: 試験 (Examination) 题目大意: 有\(n(n\le10^5)\)个人,每个人有两种属性\(s_i,t_i\).\(q(q\le10^5)\)次询问 ...
- javascript 数据类型 -- 检测
一.前言 在上一篇博文中 Javascript 数据类型 -- 分类 中,我们梳理了 javascript 的基本类型和引用类型,并提到了一些冷知识.大概的知识框架如下: 这篇博文就讲一下在写代码的过 ...
- 读取 ini 配置文件
ini 配置文件格式:db_config.ini '''[section]option=value''' [DATABASE1] host=192.168.30.80 port= user=testa ...
- Java_流程控制
介绍: java的流程控制结构有三种:顺序.选择.循环 顺序结构,就是从头到尾依次执行每条语句的操作. 选择结构,也称条件控制,是指根据表达式的值有选择的执行. 循环结构,也称回 ...
- 微信小程序开发----微信开发者工具使用
新建项目选择小程序项目,选择代码存放的硬盘路径,填入刚刚申请到的小程序的 AppID,给你的项目起一个好听的名字,最后,勾选 "创建 QuickStart 项目" (注意: 你要选 ...