[再寄小读者之数学篇](2014-06-23 Gronwall-type inequality)
Suppose that $$\bex \cfrac{\rd f}{\rd t}+h\leq gf\quad (f,g,h\geq 0,\ t\in [0,T]). \eex$$ Then for $t\in [0,T]$, $$\bex f(t)+\int_0^t h(s)\rd s \leq f(0)\sez{ 1+\int_0^t g(s)\rd s\cdot \exp\sex{\int_0^t g(s)\rd s} }. \eex$$
[再寄小读者之数学篇](2014-06-23 Gronwall-type inequality)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 如何在Spring Data JPA中引入Querydsl
一.环境说明 基础框架采用Spring Boot.Spring Data JPA.Hibernate.在动态查询中,有一种方式是采用Querydsl的方式. 二.具体配置 1.在pom.xml中,引入 ...
- 英语口语练习系列-C02-抱怨
连接到英语口语系列总分类 连接到上一章棒棒的 竹石 郑燮 zhèng xiè 竹石 作者:郑燮 咬定青山不放松,立根原在破岩中. 千磨万击还坚劲,任尔东西南北风. Our team sucks. 我们 ...
- 【Python 15】分形树绘制3.0(递归函数)
1.案例描述 将递归函数与循环函数结合绘制2.0的图形 2.案例分析 3.上机实验 """ 作者:梁斌 功能:五角星的绘制 版本:3.0 日期:03/08/2017 新增 ...
- 【Python 补充01】Python运算符
Python运算符 举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. 1.算术运算符 + - * / # 加减乘除 % # 取模(返回除 ...
- HBase Client JAVA API
旧 的 HBase 接口逻辑与传统 JDBC 方式很不相同,新的接口与传统 JDBC 的逻辑更加相像,具有更加清晰的 Connection 管理方式. 同时,在旧的接口中,客户端何时将 Put 写到服 ...
- js字符串转时间
function StrToDateTime(value) { if (value) { return (new Date(Date.parse(value.replace(/-/g, "/ ...
- 全文搜索引擎 ElasticSearch 还是 Solr?
最近项目组安排了一个任务,项目中用到了全文搜索,基于全文搜索 Solr,但是该 Solr 搜索云项目不稳定,经常查询不出来数据,需要手动全量同步,而且是其他团队在维护,依赖性太强,导致 Solr 服务 ...
- js对时间的一些操作
new Date() //Thu Dec 27 2018 12:16:16 GMT+0800 (中国标准时间); new Date('2018-1-1,12:20:20'/1258454512000 ...
- Merge Sort(Java)
public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...
- poj3436(拆点最大流)
题意:给你p和n,p代表每台计算器需要几个部分组成,n代表有几个组装机器,接下来n行,每行第一个数代表这台机器能够每小时组装几台,剩下前三个数字表示使用这台机器需要的前置条件(0代表当前组装不能有这个 ...