A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component of the vorticity. Comput. Math. Appl. 73 (2017), no. 12, 2573--2580], we have obtained the following fine property of the convective terms of axisymmetric MHD system Let $u,v,w$ be smooth axisymmetric $\bbR^3$-valued functions. Then $$\bee\label{lem:me:equal} \bea &\quad\sum_{i,j,k=1}^3\p_ku_j\cdot \p_jv_i\cdot \p_kw_i\\ &=\frac{u^r}{r}\cdot \frac{v^r}{r}\cdot \frac{w^r}{r} +\frac{u^r}{r}\cdot \frac{v^\tt}{r}\cdot \frac{w^\tt}{r}\\ &\quad+\frac{u^\tt}{r}\cdot \p_rv^r\cdot \frac{w^\tt}{r} -\frac{u^\tt}{r}\cdot \p_rv^\tt\cdot \frac{w^r}{r}\\ &\quad+ \p_ru^\tt\cdot \frac{v^r}{r}\cdot\p_rw^\tt +\p_zu^\tt \cdot \frac{v^r}{r}\cdot \p_zw^\tt -\p_ru^\tt\cdot \frac{v^\tt}{r}\cdot \p_rw^r -\p_zu^\tt\cdot \frac{v^\tt}{r}\cdot \p_zw^r \\ &\quad +\p_ru^r\cdot \p_rv^r\cdot \p_rw^r +\p_ru^r\cdot \p_rv^\tt\cdot \p_rw^\tt +\p_ru^r\cdot \p_rv^z\cdot \p_rw^z\\ &\quad +\p_ru^z\cdot \p_zv^r\cdot \p_rw^r +\p_ru^z\cdot \p_zv^\tt\cdot \p_rw^\tt +\p_ru^z\cdot \p_zv^z\cdot \p_rw^z\\ &\quad +\p_zu^r\cdot \p_rv^r\cdot \p_zw^r +\p_zu^r\cdot \p_rv^\tt\cdot \p_zw^\tt +\p_zu^r\cdot \p_rv^z\cdot \p_zw^z\\ &\quad +\p_zu^z\cdot \p_zv^r\cdot \p_zw^r +\p_zu^z\cdot \p_zv^\tt\cdot \p_zw^\tt +\p_zu^z\cdot \p_zv^z\cdot \p_zw^z. \eea \eee$$ With this above fine property, we could be able to find a regularity criterion in terms of $\om^\tt$ and $j^\tt$. Moreover, using the governing equations of $j^\tt$: $$\bee\label{j_tt} \bea &\p_t j^\tt +u^r\p_rj^\tt+u^z\p_zj^\tt -\sex{\p_r^2+\p_z^2+\frac{1}{r}\p_r-\frac{1}{r^2}}j^\tt\\ &=b^r\p_r\om^\tt +b^z\p_z\om^\tt +(\p_ru^r-\p_zu^z)(\p_zb^r+\p_rb^z) -(\p_zu^r+\p_ru^z) (\p_rb^r-\p_zb^z), \eea \eee$$ we could show that if $$\bee\label{thm:me:om^tt} \om^\tt\in L^p(0,T;L^q(\bbR^3)),\quad\frac{2}{p} +\frac{3}{q}=2,\quad 2\leq q\leq 3, \eee$$ then the solution is smooth on $(0,T)$.
A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$的更多相关文章
- A fine property of the non-empty countable dense-in-self set in the real line
A fine property of the non-empty countable dense-in-self set in the real line Zujin Zhang School o ...
- Collections of Zujin Zhang's Published works
I am not good, but I shall do my best to be better. Any questions, please feel free to contact zhang ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- property 与 attribute 的区别?
一个是属性,用于存取类的字段,一个是特性,用来标识类,方法等的附加性质. 属性: class TimePeriod { private double seconds; public double Ho ...
- (七)solr7之Terms组件的使用
(七)solr7之Terms组件的使用 Terms组件提供访问索引项的字段和每个词相匹配的文档数量. 这可以用于建立一个自动建议特性或任何其他的特性,而这个terms不是搜索或文档级别的水平.快速检索 ...
- Delphi Property详解
http://anony3721.blog.163.com/blog/static/51197420107105132120/?ignoreua Property Keyword Defines co ...
- ElasticSearch搜索term和terms的区别
今天同事使用ES查询印地语的文章.发现查询报错,查询语句和错误信息如下: 查询语句:{ "query":{ "bool":{ ...
- property配置
之前把设备历史数据存储的时间周期存储在了数据库中,因为以下一些原因,我打算改写到property配置文件中 1.这个周期时间的配置没有单独放一个tabel中,导致现在设备类型越来越多,每次添加或者修改 ...
- 一)如何开始 ehcache ?
官网地址 http://www.ehcache.org/ 从哪开始 第一步优先下载 http://www.ehcache.org/downloads/ 下载 Ehcache 2.10.0 .tar.g ...
随机推荐
- hashlib模块
老师博客:http://www.cnblogs.com/Eva-J/articles/7228075.html#_label12 摘要算法 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个 ...
- mysql partition分区
(转) 自5.1开始对分区(Partition)有支持 = 水平分区(根据列属性按行分)=举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录. === 水 ...
- vue diff 算法学习
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { let oldStartIdx ...
- kubernete 本地持久化存储 kube-controller-manager的日志输出 + pvc pv 概念 -- storageclass 概念
1.mysql持久化存储 [root@pserver78 0415villa]# cat latestmysql.yaml |grep -v '^#' apiVersion: v1 kind: Ser ...
- Nginx(三)------nginx 反向代理
Nginx 服务器的反向代理服务是其最常用的重要功能,由反向代理服务也可以衍生出很多与此相关的 Nginx 服务器重要功能,比如后面会介绍的负载均衡.本篇博客我们会先介绍 Nginx 的反向代理,当然 ...
- Windows 支持 OpenSSH 了!
从 Win10 1809 和 Windows Server 2019 开始 Windows 开始支持 OpenSSH Server.本文介绍一下其基本的概念和配置方法,本文演示用的环境为 Win10 ...
- 关于PHP自动捕捉处理错误和异常的尝试
之所以想着做错误和异常的自动处理是因为: 用的公司自己的框架写API,没有异常和错误相关功能, 而每次操作都进行try...catch,有点繁琐不说,感觉还很鸡肋,即使我catch到了,还是得写代码进 ...
- mysql 查询 int类型日期转换成datetime类型
数据库日期类型是int类型的,该查询结果是datetime类型的 SELECT from_unixtime( `时间列名` ) FROM 表名 如果原来类型是datetime类型,查询结果要是int类 ...
- UC和QQ两个主流浏览器 * 点击触发微信分享到朋友圈或发送给朋友的功能(转载)
转载(声明:仅供学习使用) /** * 此插件主要作用是在UC和QQ两个主流浏览器 * 上面触发微信分享到朋友圈或发送给朋友的功能 * 代码编写过程中 参考: * http://mjs.sinaimg ...
- JavaScript实用的工具/类库
Moment.js//JavaScript日期处理类库. Lodash.js//非常实用的工具库. MD5//加密. Numeral.js//格式化和数字四则运算. Pure.css//CSS模块.