[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}{\p x_k}&\sed{ \rho u_k\sex{e+\cfrac{1}{2}u^2-\cfrac{p}{\rho}} +\mu_0u_kH^2-\mu_0H_k({\bf u}\cdot{\bf H}) }=\rho{\bf F}\cdot{\bf u}. \eea \eeex$$
证明: 仅须注意到 $$\bex ({\bf u}\times{\bf H})\times{\bf H}=({\bf u}\cdot {\bf H}){\bf H}-H^2{\bf u}. \eex$$
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程的更多相关文章
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第1章习题5 偶极子的电场强度
试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...
- [物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...
随机推荐
- raise
raise 后边一般是更报错处理的,比如nameerror.先上代码 try: a='a0'+8 except: print('l') raise else: print('women') print ...
- CentOS 6.5 minimal 安装配置VMware tools
1.登录到系统,切换到root账户 2.配置网络 minimal版本默认不启动网络,所以要自己配置. 配置过程很简单,编辑配置文件 vi /etc/sysconfig/network-script/i ...
- 18 python 初学(time、random 模块)
# _author: lily # _date: 2019/1/13 import time import datetime print(help(time)) # print(time.time() ...
- Docker镜像拉不下来?试试这些
DaoCloud 加速器1.0(永久免费) DaoCloud是国内第一家Dock Hub加速器提供商 注意,加速器 2.0 需要使用 DaoCloud 自己的云服务器才可以使用.官方宣称会继续支持加速 ...
- OCR技术浅析-无代码篇(1)
图像识别中最贴近我们生活的可能就是 OCR 技术了. OCR 的定义:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打 ...
- JS 灵活使用 console 调试
前言: Web 开发中最常用的调试就是 console.log(),console 除了 本身 log() 方法外,还有其他很多方法. console.log() console.log() 有许多意 ...
- Linux下修改MySQL数据表中字段属性
一.修改某个表的字段类型及指定为空或非空 alter table 表名称 change 字段名称 字段名称 字段类型 [是否允许非空]; alter table 表名称 modify 字段名称 字段类 ...
- yum 安装fuser命令
yum install -y psmisc 转自:https://www.cnblogs.com/saneri/p/5465718.html 有时候我们需要umount某个挂载目录时会遇到如下问题: ...
- ExcelTools使用
using NPOI.SS.Formula.Functions; using NPOI.SS.UserModel; using System; using System.Collections.Gen ...
- POJChallengeRound2 Guideposts 【单位根反演】【快速幂】
题目分析: 这题的目标是求$$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}G^i $$ 这个形式很像单位根反演. 单位根反演一般用于求:$ \sum_{i \in ...