机器学习 - 正则化L1 L2
L1 L2 Regularization
表示方式:
$L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 + ... + w_n^2}$
执行 L2 正则化对模型具有以下影响
- 使权重值接近于 0(但并非正好为 0)
- 使权重的平均值接近于 0,且呈正态(钟形曲线或高斯曲线)分布。
模型开发者通过以下方式来调整正则化项的整体影响:用正则化项的值乘以名为 lambda(又称为正则化率)的标量。也就是说,模型开发者会执行以下运算:
$\text{minimize(Loss(Data|Model)} + \lambda \text{ complexity(Model))}$
增加 lambda 值将增强正则化效果。 例如,lambda 值较高的权重直方图可能会如图 2 所示。
降低 lambda 的值往往会得出比较平缓的直方图,如图 3 所示。
参考:
https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/lambda?hl=zh-cn
https://zhuanlan.zhihu.com/p/25707761
机器学习 - 正则化L1 L2的更多相关文章
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- 正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- L0,L1,L2正则化浅析
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
随机推荐
- 数据库之redis篇(2)—— redis配置文件,常用命令,性能测试工具
redis配置 如果你是找网上的其他教程来完成以上操作的话,相信你见过有的启动命令是这样的: 启动命令带了这个参数:redis.windows.conf,由于我测试环境是windows平台,所以是这个 ...
- 启动期间的内存管理之引导分配器bootmem--Linux内存管理(十)
在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检 ...
- 理解ECS的概念和Unity中的ECS设计
组合优于继承 ecs的概念很早就有了,最初的主要目的应该还是为了改善设计. e-c-s三者都有其意义,e-c是组合优于继承,主要用以改善oo的继承耦合过重以及多继承菱形问题. oop常见设计里,每个g ...
- Docker: 构建Nginx,PHP,Tomcat基础镜像
Usage: docker build [OPTIONS] PATH | URL | - [flags] Options: -t, --tag list # 镜像名称 -f, --file strin ...
- Linux中删除特殊名称文件的多种方式
今日分享:我们在肉体的疾病方面花了不少钱,精神的病害方面却没有花什么,现在已经到了时候,我们应该有不平凡的学校.--<瓦尔登湖> 前言 我们都知道,在linux删除一个文件可以使用rm命令 ...
- asp.net 客户端请求到响应的整个过程
出处:https://www.cnblogs.com/Joans/archive/2012/02/08/2342887.html 疑惑?从客户端发出一个请求,请求到达服务端如何和IIS关联起来?IIS ...
- 浅析foreach语句
本篇是我对于foreach语句(增强for)的总结: 我的总结流程如下: 1.先整体说明增强for遍历集合与数组之间的区别. 2.通过一维数组来说明(给出反编译的源码,形成对照). 3.通过二维数组来 ...
- Python 隔离环境 virtualenv
1) 安装 $ sudo pip3 install virtualenv 2) 创建并进入工程目录,例如 myproject $ mkdir myproject $ cd myproject 3) 在 ...
- Re:Exgcd解二元不定方程
模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. ...
- [Oracle运维工程师手记] 如何从trace 文件,判断是否执行了并行
[Oracle运维工程师手记系列]如何从trace 文件,判断是否执行了并行 客户说,明明指定了并行的hint,OEM 却报说没有并行,并且提供了画面. 客户的SQL文长这样: INSERT/*+ p ...