POJ终于修好啦

题意

和UVA1205是同一题,在洛谷上是紫题

有一棵树,需要给其所有节点染色,每个点染色所需的时间是一样的都是11.给每个点染色,还有一个开销“当前时间×ci×ci”,cici是每个节点的一个权值。(当前时间是染完这个节点的时间)  染色还有另一个约束条件,要染一个点必须要先染好其父节点,所以第一个染的点是根节点.  求最小开销。

思路

这道题显然对于 每一个可选的子节点选最重的 的贪心思路是错误的

就有点类似动态规划了 不过不DP也是可以贪心出来的。但是这个策略比较麻烦。大致思路就是父节点和子节点经过一些操作合并,合并之后贪心就是没问题的了。

不过我一开始自己的思路就是类似并查集+贪心的,不是合并(虽然差不多),就是全局贪心,把所有的点的权值排序,然后最大到最小的所有点慢慢并查集搜回去,直到所有点被处理过,也应该是可以的吧?但是时间复杂度肯定不行,于是就看李煜东的代码了(颓)。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; #define N 1005 int n, r;
double c[N];
int nxt[N], la[N], num[N],fa[N];
double d[N],tot[N];
bool vis[N]; void color_a_tree()
{
for (int i = ; i <= n; i++)
{
scanf("%lf", &c[i]);
nxt[i] = i; la[i] = i; num[i] = ; tot[i] = c[i];
}
memcpy(d, c, sizeof(d));
for (int i = , a, b; i < n; i++)scanf("%d%d", &a, &b), fa[b] = a;
memset(vis, , sizeof(vis));
for (int i = ; i < n; i++)
{
int p;
double k = ;
for(int j=;j<=n;j++)
if (j != r && !vis[j] && c[j] > k)
{
k = c[j];
p = j;
}
int f = fa[p];
while (vis[f]) fa[p] = f = fa[f];//getfather
nxt[la[f]] = p;
la[f] = la[p];
num[f] += num[p];
tot[f] += tot[p];
c[f] = tot[f] / num[f];
vis[p] = ;
}
int ans = ;
for (int i = ; i <= n; i++)
{
ans += i * d[r];
r = nxt[r];
}
printf("%d\n", ans);
} int main()
{
while (scanf("%d%d", &n, &r) == && n && r) color_a_tree();
return ;
}

[POJ2054]Color a Tree (并查集+贪心)的更多相关文章

  1. HDU 1598 find the most comfortable road 并查集+贪心

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...

  2. Hdu.1325.Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. POJ 1456 Supermarket 区间问题并查集||贪心

    F - Supermarket Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  4. Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26002   Accepted: 8879 De ...

  5. CF109 C. Lucky Tree 并查集

    Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...

  6. HDU 5606 tree 并查集

    tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ans​i​​=size[findset(i)],size表示每个并 ...

  7. [Swust OJ 856]--Huge Tree(并查集)

    题目链接:http://acm.swust.edu.cn/problem/856/ Time limit(ms): 1000 Memory limit(kb): 10000 Description T ...

  8. Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. Is It A Tree?(并查集)(dfs也可以解决)

    Is It A Tree? Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submi ...

随机推荐

  1. elk每日清除30天索引脚本

      日常elk产生日志太多,故写个脚本放在定时任务,定时清理脚本 查询索引: curl -XGET 'http://127.0.0.1:9200/_cat/indices/?v'   删除索引: cu ...

  2. building tool的简单了解

    java常用的三种构建工具: Apache Maven ——主要用于构建Java项目的自动化工具. NetBeans IDE 支持 Maven 构建系统,可帮助您管理项目的依赖关系.构建.报告和文档. ...

  3. CSRF篇-本着就了解安全本质的想法,尽可能的用通俗易懂的语言去解释安全漏洞问题

    0x01 Brief Description csrf 跨站伪造请求,请求伪造的一种,是由客户端即用户浏览器发起的一种伪造攻击.攻击的本质是请求可以被预测的到. 在了解csrf攻击之前,需要了解浏览器 ...

  4. CRMEB客户管理+电商管理系统帮助文档,送给有需要的人

    本项目还在不断开发完善中,如有建议或问题请言

  5. nnet3配置中的上下文和chunk(块)大小

    Nnet3配置中的上下文和块大小 简介 本页讨论了nnet3配置中关于解码和训练的块大小以及左右上下文的某些术语.这将有助于理解一些脚本.目前,从脚本角度来看,没有任何关于nnet3的"概述 ...

  6. 鼠标右键添加Sublime Text

    鼠标右键添加Sublime Text 参考 将sublime添加到鼠标右键 实践 1. win+R 输入regedit 2. 输入路径: 计算机\HKEY_CLASSES_ROOT\*\shell\ ...

  7. SQL Server - Partition by 和 Group by对比

    参考:https://www.cnblogs.com/hello-yz/p/9962356.html —————————————————— 今天大概弄懂了partition by和group by的区 ...

  8. jsonp跨域ajax跨域get方法

    原理: 就是利用<script >标签没有跨域限制的,从而达到与第三方网站通讯的目的.当需要通讯时,本站脚本创建一个<script>标签,src地址指向第三方网站的的一个网址. ...

  9. springboot项目中如何在pom文件覆盖starter中默认指定的jar版本号

    分两种情况: 1.项目继承自spring-boot-starter-parent  通过定义properties的方式改变starter中的默认版本 <!-- Inherit defaults ...

  10. shell脚本的小记

    作者:邓聪聪 mysql的脚本执行 #!/bin/sh HOST="127.0.0.1" PORT=" UESRNAME="root" PASSWOR ...