[POJ2054]Color a Tree (并查集+贪心)
POJ终于修好啦
题意
和UVA1205是同一题,在洛谷上是紫题
有一棵树,需要给其所有节点染色,每个点染色所需的时间是一样的都是11.给每个点染色,还有一个开销“当前时间×ci×ci”,cici是每个节点的一个权值。(当前时间是染完这个节点的时间) 染色还有另一个约束条件,要染一个点必须要先染好其父节点,所以第一个染的点是根节点. 求最小开销。
思路
这道题显然对于 每一个可选的子节点选最重的 的贪心思路是错误的
就有点类似动态规划了 不过不DP也是可以贪心出来的。但是这个策略比较麻烦。大致思路就是父节点和子节点经过一些操作合并,合并之后贪心就是没问题的了。
不过我一开始自己的思路就是类似并查集+贪心的,不是合并(虽然差不多),就是全局贪心,把所有的点的权值排序,然后最大到最小的所有点慢慢并查集搜回去,直到所有点被处理过,也应该是可以的吧?但是时间复杂度肯定不行,于是就看李煜东的代码了(颓)。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; #define N 1005 int n, r;
double c[N];
int nxt[N], la[N], num[N],fa[N];
double d[N],tot[N];
bool vis[N]; void color_a_tree()
{
for (int i = ; i <= n; i++)
{
scanf("%lf", &c[i]);
nxt[i] = i; la[i] = i; num[i] = ; tot[i] = c[i];
}
memcpy(d, c, sizeof(d));
for (int i = , a, b; i < n; i++)scanf("%d%d", &a, &b), fa[b] = a;
memset(vis, , sizeof(vis));
for (int i = ; i < n; i++)
{
int p;
double k = ;
for(int j=;j<=n;j++)
if (j != r && !vis[j] && c[j] > k)
{
k = c[j];
p = j;
}
int f = fa[p];
while (vis[f]) fa[p] = f = fa[f];//getfather
nxt[la[f]] = p;
la[f] = la[p];
num[f] += num[p];
tot[f] += tot[p];
c[f] = tot[f] / num[f];
vis[p] = ;
}
int ans = ;
for (int i = ; i <= n; i++)
{
ans += i * d[r];
r = nxt[r];
}
printf("%d\n", ans);
} int main()
{
while (scanf("%d%d", &n, &r) == && n && r) color_a_tree();
return ;
}
[POJ2054]Color a Tree (并查集+贪心)的更多相关文章
- HDU 1598 find the most comfortable road 并查集+贪心
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...
- Hdu.1325.Is It A Tree?(并查集)
Is It A Tree? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- POJ 1456 Supermarket 区间问题并查集||贪心
F - Supermarket Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- Is It A Tree?(并查集)
Is It A Tree? Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26002 Accepted: 8879 De ...
- CF109 C. Lucky Tree 并查集
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...
- HDU 5606 tree 并查集
tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ansi=size[findset(i)],size表示每个并 ...
- [Swust OJ 856]--Huge Tree(并查集)
题目链接:http://acm.swust.edu.cn/problem/856/ Time limit(ms): 1000 Memory limit(kb): 10000 Description T ...
- Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Is It A Tree?(并查集)(dfs也可以解决)
Is It A Tree? Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submi ...
随机推荐
- (二叉树 DFS 递归) leetcode 112. Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- Linux Centos7.x下安装部署Jira和confluence以及破解方法详述
简述 JIRA是Atlassian公司出品的项目与事务跟踪工具,被广泛应用于缺陷跟踪.客户服务.需求收集.流程审批.任务跟踪.项目跟踪和敏捷管理等工作领域. Confluence是一个专业的企业知识管 ...
- angular的小实例
主要是使用了angular的指令. 学习地址:http://www.runoob.com/angularjs/angularjs-tutorial.html 1. 效果: 输入数据剩余字数会相应减少, ...
- React 记录(5)
React文档:https://www.reactjscn.com/docs/state-and-lifecycle.html 慢慢学习:对照教程文档,逐句猜解,截图 React官网:https:// ...
- [再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b ...
- [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...
- LESS知识总结
知识体系 1.认识less 2.使用less 3.变量( variables ) 4.混合 ( mixins ) 5.嵌套规则 ( nested-rules ) 6.运算(operation ...
- jdk1.8新特性 lambda表达式和Stream
一.Lambda 1.lambda : 匿名函数 2.好处:减少打码的冗余,增强匿名函数的可读性 3.语法格式 语法格式一 : 无参数,无返回值 () -> System.out.println ...
- 前端基础之jQuery
JavaScript和jQuery的区别 JavaScript是一门编程语言,我们用它来编写客户端浏览器脚本 jQuery是javascript的一个库,包含多个可重用的函数,用来辅助我们简化java ...
- tmux 后台训练
参考链接:https://blog.csdn.net/u014381600/article/details/54588531