ElasticSearch6.5.0 【Java客户端之REST Client】
说明
High Level Client 是基于 Low Level Client 的。官方文档如下:
* https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/index.html
* https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
依赖
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>6.5.0</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.11.1</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.11.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.25</version>
</dependency> <dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>6.5.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>6.5.0</version>
</dependency>
连接
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient; /**
* Java高级REST客户机在Java低级REST客户机之上工作。它的主要目标是公开特定于API的方法,这些方法接受请求对象作为参数并返回响应对象
* 可以同步或异步调用每个API。同步方法返回一个响应对象,而异步方法(其名称以async后缀结尾)需要一个侦听器参数
* 一旦接收到响应或错误,侦听器参数(在低层客户机管理的线程池上)将被通知。
* Java高级REST客户机依赖于Elasticsearch核心项目。它接受与TransportClient相同的请求参数,并返回相同的响应对象。
* Java高级REST客户机需要Java 1.8
* 客户机版本与开发客户机的Elasticsearch版本相同
* 6.0客户端能够与任意6.X节点通信,6.1客户端能够与6.1、6.2和任意6.X通信
*/
public class RestClientFactory { private RestClientFactory(){} private static class Inner{
private static final RestClientFactory instance = new RestClientFactory();
} public static RestClientFactory getInstance(){
return Inner.instance;
} public RestHighLevelClient getClient(){
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
//new HttpHost("localhost", 9201, "http"),
new HttpHost("localhost", 9200, "http")
)
);
return client;
} }
【JavaAPI与HTTP请求】
1. Index
HTTP请求
查看所有数据
GET twitter/t_doc/_search
---
# 添加数据[index]/[type]/[id]
PUT twitter/t_doc/
{
"user" : "kimchy",
"post_date" : "2018-12-24T11:32:00",
"message" : "trying out Elasticsearch"
}
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "",
"_version" : ,
"result" : "created",
"_shards" : {
"total" : ,
"successful" : ,
"failed" :
},
"_seq_no" : ,
"_primary_term" :
}
Java
public static RestHighLevelClient index() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("user", "kimchy");
jsonMap.put("postDate", new Date());
jsonMap.put("message", "trying out Elasticsearch"); IndexRequest indexRequest = new IndexRequest("twitter", "t_doc", "1")
.source(jsonMap);
IndexResponse response = client.index(indexRequest, RequestOptions.DEFAULT);
System.out.println(response.status().name());
return client;
}
结果:
CREATED
还有两种形式添加数据
/**
* 方式二:XContentBuilder
* @return
* @throws IOException
*/
public static RestHighLevelClient index2() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
XContentBuilder builder = jsonBuilder();
builder.startObject();
{
builder.field("user", "kimchy");
builder.timeField("postDate", new Date());
builder.field("message", "trying out Elasticsearch");
}
builder.endObject();
IndexRequest indexRequest = new IndexRequest("twitter", "t_doc", "2")
.source(builder);
IndexResponse response = client.index(indexRequest, RequestOptions.DEFAULT);
System.out.println(response.status().name());
return client;
} /**
* 方式三:Object key-pairs对象键
* 同步方法
* @return
* @throws IOException
*/
public static RestHighLevelClient index3() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
IndexRequest indexRequest = new IndexRequest("twitter", "t_doc", "3")
.source("user", "kimchy",
"postDate", new Date(),
"message", "trying out Elasticsearch");
IndexResponse response = client.index(indexRequest, RequestOptions.DEFAULT); // 同步方式
System.out.println(response.status().name());
return client;
}
还能异步创建&添加数据
/**
* 异步方法
* @return
* @throws IOException
*/
public static RestHighLevelClient index4() throws IOException, InterruptedException {
ActionListener listener = new ActionListener<IndexResponse>() {
@Override
public void onResponse(IndexResponse indexResponse) {
System.out.println("Async:" + indexResponse.status().name());
if (indexResponse.getResult() == DocWriteResponse.Result.CREATED) {
// Todo
} else if (indexResponse.getResult() == DocWriteResponse.Result.UPDATED) {
// Todo
}
// 处理成功分片小于总分片的情况
ReplicationResponse.ShardInfo shardInfo = indexResponse.getShardInfo();
if (shardInfo.getTotal() != shardInfo.getSuccessful()) {
// Todo
}
} @Override
public void onFailure(Exception e) {
System.out.println("AsyncFailure:" + e.getMessage());
e.printStackTrace();
}
}; RestHighLevelClient client = RestClientFactory.getInstance().getClient();
IndexRequest indexRequest = new IndexRequest("twitter", "t_doc", "4")
.source("user", "kimchy",
"postDate", new Date(),
"message", "trying out Elasticsearch")
.routing("my_route"); // 指定路由 client.indexAsync(indexRequest, RequestOptions.DEFAULT, listener); // 异步方式
Thread.sleep(2000);
return client;
}
结果:
Async:CREATED
2. Get
HTTP请求
# 获取数据
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"postDate" : "2018-12-24T03:42:22.787Z",
"message" : "trying out Elasticsearch",
"user" : "kimchy"
}
}
可以指定routing
GET twitter/t_doc/?routing=my_route
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "4",
"_version" : 1,
"_routing" : "my_route",
"found" : true,
"_source" : {
"user" : "kimchy",
"postDate" : "2018-12-24T06:08:45.178Z",
"message" : "trying out Elasticsearch"
}
}
可以只要数据信息_source
GET twitter/t_doc//_source?routing=my_route
结果:
{
"user" : "kimchy",
"postDate" : "2018-12-24T06:08:45.178Z",
"message" : "trying out Elasticsearch"
}
Java
public static RestHighLevelClient getOne() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetRequest request = new GetRequest("twitter", "t_doc", "4").routing("my_route"); // 指定routing的数据,查询也要指定
try {
GetResponse response = client.get(request, RequestOptions.DEFAULT);
System.out.println(response.getSourceAsString());
} catch (ElasticsearchException e) {
// 处理找不到index的异常
if(e.status() == RestStatus.NOT_FOUND){
// TODO
}
}
return client;
}
结果:
{"user":"kimchy","postDate":"2018-12-24T06:08:45.178Z","message":"trying out Elasticsearch"}
异步获取,并且指定包含/排除的字段
/**
* 查询-额外参数
* 异步获取
* @return
* @throws IOException
*/
public static RestHighLevelClient getOneOp() throws IOException, InterruptedException {
ActionListener<GetResponse> listener = new ActionListener<GetResponse>() {
@Override
public void onResponse(GetResponse documentFields) {
System.out.println(documentFields.getSourceAsString());
} @Override
public void onFailure(Exception e) {
System.out.println("Error:" + e.getMessage());
e.printStackTrace();
}
}; RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetRequest request = new GetRequest("twitter", "t_doc", "1");
String[] includes = new String[]{"message", "*Date"}; // 包含的字段
String[] excludes = Strings.EMPTY_ARRAY; // 排除的字段
FetchSourceContext fetchSourceContext =
new FetchSourceContext(true, includes, excludes);
request.fetchSourceContext(fetchSourceContext);
client.getAsync(request, RequestOptions.DEFAULT, listener);
Thread.sleep(2000);
return client;
}
结果:
{"postDate":"2018-12-24T03:42:22.787Z","message":"trying out Elasticsearch"}
到这里也应该知道,Rest API 对每个操作提供了同步/异步的方法。
3. Exist API
Java
/**
* 检查是否存在
* @return
* @throws IOException
*/
public static RestHighLevelClient exist() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetRequest request = new GetRequest("twitter", "t_doc", "1");
request.storedFields("_none_"); // 禁用获取存储字段
request.fetchSourceContext(FetchSourceContext.DO_NOT_FETCH_SOURCE); // 禁用抓取_source
boolean exists = client.exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
return client;
}
结果:
true
4. Delete API
HTTP请求
DELETE twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : ,
"_primary_term" :
}
Java
/**
* 删除也可以异步、也可以捕获异常,成功删除的分片数量,版本冲突
* @return
* @throws IOException
*/
public static RestHighLevelClient deleteOne() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
DeleteRequest request = new DeleteRequest("twitter", "t_doc", "1");
DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
System.out.println(response.status().name());
// 处理找不到的情况
if (response.getResult() == DocWriteResponse.Result.NOT_FOUND) {
// TODO
}
return client;
}
结果:
NOT_FOUND
5. Delete By Query API
我这里有4条测试数据
{"user":"Tom","flag":"1"}
{"user":"foo","flag":"2"}
{"user":"bar","flag":"2"}
{"user":"baz","flag":"2"}
HTTP 请求
# 删除flag=的数据
POST twitter/_delete_by_query?conflicts=proceed
{
"query": {
"match": {
"flag": "2"
}
}
}
结果:
{
"took" : 183,
"timed_out" : false,
"total" : 3,
"deleted" : 3,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : ,
"requests_per_second" : -1.0,
"throttled_until_millis" : ,
"failures" : [ ]
}
--扩展
# 清空索引全部数据
POST /[索引名]/_delete_by_query
{
"query": {
"match_all": {}
}
}
Java
/**
* 根据查询条件删除
* @return
* @throws IOException
*/
public static RestHighLevelClient deleteByQuery() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
DeleteByQueryRequest request = new DeleteByQueryRequest("twitter");
request.setConflicts("proceed"); // 发生冲突即略过
request.setQuery(QueryBuilders.matchQuery("flag","2"));
BulkByScrollResponse bulkResponse = client.deleteByQuery(request, RequestOptions.DEFAULT);
TimeValue timeTaken = bulkResponse.getTook();
boolean timedOut = bulkResponse.isTimedOut();
long totalDocs = bulkResponse.getTotal();
long updatedDocs = bulkResponse.getUpdated();
long deletedDocs = bulkResponse.getDeleted();
long batches = bulkResponse.getBatches();
long noops = bulkResponse.getNoops();
long versionConflicts = bulkResponse.getVersionConflicts();
System.out.println("花费时间:" + timeTaken + ",是否超时:" + timedOut + ",总文档数:" + totalDocs + ",更新数:" +
updatedDocs + ",删除数:" + deletedDocs + ",批量次数:" + batches + ",跳过数:" + noops + ",冲突数:" + versionConflicts);
List<ScrollableHitSource.SearchFailure> searchFailures = bulkResponse.getSearchFailures(); // 搜索期间的故障
searchFailures.forEach(e -> {
System.err.println("Cause:" + e.getReason().getMessage() + "Index:" + e.getIndex() + ",NodeId:" + e.getNodeId() + ",ShardId:" + e.getShardId());
});
List<BulkItemResponse.Failure> bulkFailures = bulkResponse.getBulkFailures(); // 批量索引期间的故障
bulkFailures.forEach(e -> {
System.err.println("Cause:" + e.getCause().getMessage() + "Index:" + e.getIndex() + ",Type:" + e.getType() + ",Id:" + e.getId());
});
return client;
}
结果:
花费时间:97ms,是否超时:false,总文档数:3,更新数:0,删除数:3,批量次数:1,跳过数:0,冲突数:0
6. Update API
我有一条测试数据
{"user":"Tom","flag":"1"}
HTTP 请求
# 通过脚本更新
POST twitter/t_doc//_update
{
"script" : {
"source": "ctx._source.msg = params.msg",
"lang": "painless",
"params" : {
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない"
}
}
}
# 通过文档更新
POST twitter/t_doc//_update
{
"doc" : {
"user" : "new_name"
}
}
upserts
# upserts(如果文档不存在,则把upsert里面的内容作为文档插入)
POST twitter/t_doc//_update
{
"script" : {
"source": "ctx._source.counter += params.count",
"lang": "painless",
"params" : {
"count" : 4
}
},
"upsert" : {
"counter" : 1
}
}
结果【创建新文档】:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : ,
"_primary_term" :
}
如果你再执行的话就是更新了
结果【更新文档】:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "2",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : ,
"_primary_term" :
}
查询:
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "2",
"_version" : 2,
"found" : true,
"_source" : {
"counter" : 5
}
}
不用脚本而用文档更新
# 如果文档不存在,则将doc内容作为新文档插入(因为"doc_as_upsert" : true)
POST twitter/t_doc//_update
{
"doc" : {
"name" : "new_name"
},
"doc_as_upsert" : true
}
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "3",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : ,
"_primary_term" :
}
查询:
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "3",
"_version" : 1,
"found" : true,
"_source" : {
"name" : "new_name"
}
}
Java
/**
* 通过脚本更新,可以添加字段
* @return
*/
public static RestHighLevelClient updateOne() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
UpdateRequest request = new UpdateRequest("twitter", "t_doc", "1"); Map<String, Object> parameters = singletonMap("msg", "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない");
Script inline = new Script(ScriptType.INLINE, "painless",
"ctx._source.msg = params.msg", parameters);
request.script(inline); UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
return client;
}
输出:OK
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 4,
"found" : true,
"_source" : {
"user" : "Tom",
"flag" : "1",
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない"
}
}
还可以通过XContentBuilder
/**
* 通过XContentBuilder更新
* @return
* @throws IOException
*/
public static RestHighLevelClient updateOne2() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient(); XContentBuilder builder = jsonBuilder()
.startObject()
.startObject("animal")
.field("cat", "阿猫")
.field("dog", "阿狗")
.endObject()
.endObject();
UpdateRequest request = new UpdateRequest("twitter", "t_doc", "1").doc(builder); UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
return client;
}
输出:OK
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 5,
"found" : true,
"_source" : {
"user" : "Tom",
"flag" : "1",
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない",
"animal" : {
"cat" : "阿猫",
"dog" : "阿狗"
}
}
}
还可以通过Map
/**
* 通过jsonMap更新
* @return
* @throws IOException
*/
public static RestHighLevelClient updateOne3() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient(); Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("updateUser", "Jack Ma");
UpdateRequest request = new UpdateRequest("posts", "doc", "1").doc(jsonMap); UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
return client;
}
输出:OK
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 6,
"found" : true,
"_source" : {
"user" : "Tom",
"flag" : "1",
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない",
"animal" : {
"cat" : "阿猫",
"dog" : "阿狗"
},
"updateUser" : "Jack Ma"
}
}
还可以通过 key-pairs
/**
* 通过 key-pairs 更新
* @return
* @throws IOException
*/
public static RestHighLevelClient updateOne4() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient(); UpdateRequest request = new UpdateRequest("twitter", "t_doc", "1")
.doc("favorite","二狗","hate","no Money"); UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
return client;
}
输出:OK
GET twitter/t_doc/
结果:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 7,
"found" : true,
"_source" : {
"user" : "Tom",
"flag" : "1",
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない",
"animal" : {
"cat" : "阿猫",
"dog" : "阿狗"
},
"updateUser" : "Jack Ma",
"hate" : "no Money",
"favorite" : "二狗"
}
}
upserts
/**
* 存在即更新【输出:OK】
* OK
* {"C":"Carambola","A":"Apple","B":"Banana"}
* 不存在则创建【输出:CREATED】
* CREATED
* {"C":"Carambola"}
* 开启scriptedUpsert【在文档不存在情况下输出:CREATED】
* {"A" : "Apple","B" : "Banana","C" : "Carambola"}
* @return
* @throws IOException
*/
public static RestHighLevelClient upserts() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
UpdateRequest request = new UpdateRequest("twitter", "t_doc", "7")
.script(new Script(ScriptType.INLINE,"painless",
"ctx._source.A='Apple';ctx._source.B='Banana'",Collections.EMPTY_MAP))
// 如果文档不存在,使用upsert方法定义一些内容,这些内容将作为新文档插入
.upsert(jsonBuilder()
.startObject()
.field("C","Carambola")
.endObject());
request.timeout(TimeValue.timeValueSeconds(2)); // 2秒超时
//request.scriptedUpsert(true); // 无论文档是否存在,脚本都必须运行
UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
return client;
}
--
/**
* 存在即更新
* OK
* {"C" : "Carambola","A" : "Apple","B" : "Banana","D" : "Dew"}
* 不存在则创建
* CREATED
* {"C" : "Carambola"}
* 开启docAsUpsert【在文档不存在情况下输出:CREATED】
* {"A" : "Apple","B" : "Banana","D" : "Dew"}
* @return
* @throws IOException
*/
public static RestHighLevelClient upserts2() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
UpdateRequest request = new UpdateRequest("twitter", "t_doc", "8")
.doc(jsonBuilder()
.startObject()
.field("A","Apple")
.field("B","Banana")
.field("D","Dew")
.endObject())
// 如果指定docAsUpsert(true),会忽略upsert方法
.upsert(jsonBuilder()
.startObject()
.field("C","Carambola")
.endObject());
//request.docAsUpsert(true); // 如果部分文档尚不存在,则必须将doc用作upsert文档
request.timeout(TimeValue.timeValueSeconds(2)); // 2秒超时
try {
UpdateResponse update = client.update(request, RequestOptions.DEFAULT);
System.out.println(update.status().name());
} catch (ElasticsearchException e) {
if (e.status() == RestStatus.NOT_FOUND) {
// TODO
}
} return client;
}
7. Update By Query API
HTTP请求
# 不更改源数据的前提下更新文档
POST twitter/_update_by_query?conflicts=proceed
结果:
{
"took" : 186,
"timed_out" : false,
"total" : 9,
"updated" : 9,
"deleted" : 0,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : ,
"requests_per_second" : -1.0,
"throttled_until_millis" : ,
"failures" : [ ]
}
--
我们有数据:
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "9",
"_version" : 3,
"found" : true,
"_source" : {
"flag" : "2",
"user" : "foo"
}
}
# 通过脚本更新
POST twitter/_update_by_query?conflicts=proceed
{
"script": {
"source": "ctx._source.flag++",
"lang": "painless"
},
"query": {
"term": {
"user": "foo"
}
}
}
结果:
{
"took" : 102,
"timed_out" : false,
"total" : 1,
"updated" : 1,
"deleted" : 0,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : ,
"requests_per_second" : -1.0,
"throttled_until_millis" : ,
"failures" : [ ]
}
Java
/**
* 根据查询条件更新
* @return
*/
public static RestHighLevelClient updateByQuery() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
UpdateByQueryRequest request = new UpdateByQueryRequest("twitter");
request.setConflicts("proceed");
request.setQuery(QueryBuilders.matchAllQuery())
.setBatchSize(50) // 批处理大小
.setSize(100) // 限制处理文档的数量
.setScript(new Script(
ScriptType.INLINE, "painless",
"if (ctx._source.flag == '2') {ctx._source.extMsg = '小林さんちのメイドラゴン';}", // 增加一个字段extMsg
Collections.emptyMap()));
BulkByScrollResponse bulkResponse = client.updateByQuery(request, RequestOptions.DEFAULT);
TimeValue timeTaken = bulkResponse.getTook();
boolean timedOut = bulkResponse.isTimedOut();
long totalDocs = bulkResponse.getTotal();
long updatedDocs = bulkResponse.getUpdated();
long deletedDocs = bulkResponse.getDeleted();
long batches = bulkResponse.getBatches();
long noops = bulkResponse.getNoops();
long versionConflicts = bulkResponse.getVersionConflicts();
System.out.println("花费时间:" + timeTaken + ",是否超时:" + timedOut + ",总文档数:" + totalDocs + ",更新数:" +
updatedDocs + ",删除数:" + deletedDocs + ",批量次数:" + batches + ",跳过数:" + noops + ",冲突数:" + versionConflicts);
List<ScrollableHitSource.SearchFailure> searchFailures = bulkResponse.getSearchFailures(); // 搜索期间的故障
searchFailures.forEach(e -> {
System.err.println("Cause:" + e.getReason().getMessage() + "Index:" + e.getIndex() + ",NodeId:" + e.getNodeId() + ",ShardId:" + e.getShardId());
});
List<BulkItemResponse.Failure> bulkFailures = bulkResponse.getBulkFailures(); // 批量索引期间的故障
bulkFailures.forEach(e -> {
System.err.println("Cause:" + e.getCause().getMessage() + "Index:" + e.getIndex() + ",Type:" + e.getType() + ",Id:" + e.getId());
});
return client;
}
结果:【之所以更新了全部文档,是因为matchAllQuery】
花费时间:218ms,是否超时:false,总文档数:9,更新数:9,删除数:0,批量次数:1,跳过数:0,冲突数:0
# 查询flag=的文档
GET /twitter/_search
{
"query": {
"match": {
"flag": "2"
}
}
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 0.6931472,
"hits" : [
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "10",
"_score" : 0.6931472,
"_source" : {
"flag" : "2",
"extMsg" : "小林さんちのメイドラゴン",
"user" : "bar"
}
},
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "11",
"_score" : 0.2876821,
"_source" : {
"flag" : "2",
"extMsg" : "小林さんちのメイドラゴン",
"user" : "baz"
}
}
]
}
}
8. Bulk API
HTTP请求
# 批量处理(允许Add,Delete,Update操作)如果包含routing要加上
POST _bulk
{ "delete" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "9" } }
{ "update" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "4","routing":"my_route" } }
{ "doc" : {"user":"new_user"} }
{ "index" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "21" }}
{ "user":"Tom","flag":"1" }
{ "index" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "22" }}
{ "user":"Tony","flag":"1" }
{ "index" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "23" }}
{ "user":"Mary","flag":"1" }
{ "index" : { "_index" : "twitter", "_type" : "t_doc", "_id" : "24" }}
{ "user":"Jerry","flag":"1" }
Java
/**
* 批量添加
* @return
*/
public static RestHighLevelClient bulkAdd() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
BulkRequest request = new BulkRequest();
request.add(new IndexRequest("twitter", "t_doc", "25")
.source(XContentType.JSON,"user", "Tom","flag","1"));
request.add(new IndexRequest("twitter", "t_doc", "26")
.source(XContentType.JSON,"user", "foo","flag","2"));
request.add(new IndexRequest("twitter", "t_doc", "27")
.source(XContentType.JSON,"user", "bar","flag","2"));
request.add(new IndexRequest("twitter", "t_doc", "28")
.source(XContentType.JSON,"user", "baz","flag","2"));
BulkResponse bulk = client.bulk(request, RequestOptions.DEFAULT);
System.out.println("Status:" + bulk.status().name() + ",hasFailures:" + bulk.hasFailures());
// 下面是multiGet
MultiGetRequest multiGetRequest = new MultiGetRequest()
.add(new MultiGetRequest.Item("twitter", "t_doc", "25"))
.add(new MultiGetRequest.Item("twitter", "t_doc", "26"))
.add(new MultiGetRequest.Item("twitter", "t_doc", "27"))
.add(new MultiGetRequest.Item("twitter", "t_doc", "28"));
MultiGetResponse response = client.mget(multiGetRequest, RequestOptions.DEFAULT);
MultiGetItemResponse[] itemResponses = response.getResponses();
for(MultiGetItemResponse r : itemResponses){
System.out.println(r.getResponse().getSourceAsString());
}
return client;
}
输出:
Status:OK,hasFailures:false
{"user":"Tom","flag":"1"}
{"user":"foo","flag":"2"}
{"user":"bar","flag":"2"}
{"user":"baz","flag":"2"}
也可以批量更新
/**
* 批量更新
* @return
*/
public static RestHighLevelClient bulkUpdate() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
BulkRequest request = new BulkRequest();
// 更新
request.add(new UpdateRequest("twitter", "t_doc", "27")
.doc(XContentType.JSON,"field", "foo","color", "red","size", "100"));
// 添加
request.add(new IndexRequest("twitter", "t_doc", "29")
.source(XContentType.JSON,"field", "bar","color", "blue","size", "200"));
// 删除
request.add(new DeleteRequest("twitter", "t_doc", "28"));
BulkResponse bulk = client.bulk(request, RequestOptions.DEFAULT);
System.out.println("Status:" + bulk.status().name() + ",hasFailures:" + bulk.hasFailures()); // 针对不同类型进行处理
for (BulkItemResponse bulkItemResponse : bulk) {
DocWriteResponse itemResponse = bulkItemResponse.getResponse(); if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.INDEX
|| bulkItemResponse.getOpType() == DocWriteRequest.OpType.CREATE) {
IndexResponse indexResponse = (IndexResponse) itemResponse;
System.out.println(indexResponse.status().name());
} else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.UPDATE) {
UpdateResponse updateResponse = (UpdateResponse) itemResponse;
System.out.println(updateResponse.status().name());
} else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.DELETE) {
DeleteResponse deleteResponse = (DeleteResponse) itemResponse;
System.out.println(deleteResponse.status().name());
}
} String[] includes = Strings.EMPTY_ARRAY;
String[] excludes = new String[] {"flag"};
// 包含/排除的字段
FetchSourceContext fetchSourceContext =
new FetchSourceContext(true, includes, excludes);
MultiGetRequest multiGetRequest = new MultiGetRequest()
.add(new MultiGetRequest.Item("twitter", "t_doc", "29").fetchSourceContext(fetchSourceContext))
.add(new MultiGetRequest.Item("twitter", "t_doc", "28").fetchSourceContext(fetchSourceContext))
.add(new MultiGetRequest.Item("twitter", "t_doc", "27").fetchSourceContext(fetchSourceContext)); MultiGetResponse response = client.mget(multiGetRequest, RequestOptions.DEFAULT);
MultiGetItemResponse[] itemResponses = response.getResponses();
for(MultiGetItemResponse r : itemResponses){
System.out.println(r.getResponse().getSourceAsString());
}
return client;
}
输出:
Status:OK,hasFailures:false
OK
CREATED
OK
{"field":"bar","color":"blue","size":"200"}
null
{"field":"foo","color":"red","size":"100","user":"bar"}
bulkProcessor就比较厉害了
/**
* BulkProcessor通过提供一个实用程序类来简化Bulk API的使用,它允许索引/更新/删除操作在添加到处理器时透明地执行。
* 为了执行请求,BulkProcessor需要以下组件:
* RestHighLevelClient
* 此客户端用于执行BulkRequest和检索BulkResponse
* BulkProcessor.Listener
* 在每个BulkRequest执行之前和之后,或者在BulkRequest失败时,都会调用这个侦听器
* BulkProcessor.builder方法可用于构建新的BulkProcessor:
* @return
*/
public static RestHighLevelClient bulkProcessor() throws InterruptedException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient(); BulkProcessor.Listener listener = new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId, BulkRequest request) {
int numberOfActions = request.numberOfActions();
System.out.println("请求数量:" + numberOfActions);
} @Override
public void afterBulk(long executionId, BulkRequest request, BulkResponse response) {
if (response.hasFailures()) {
System.out.println("Bulk Failures,ID:" + executionId + ",Status:" + response.status().name());
for (BulkItemResponse bulkItemResponse : response) {
if (bulkItemResponse.isFailed()) {
BulkItemResponse.Failure failure = bulkItemResponse.getFailure();
System.err.println(failure.getCause().getMessage());
}
}
} else {
System.out.println("Bulk "+ executionId +" Complete in" + response.getTook().getMillis() + "s");
}
} @Override
public void afterBulk(long executionId, BulkRequest request, Throwable failure) {
System.out.println("Failed to execute bulk:" + failure);
}
}; BiConsumer<BulkRequest, ActionListener<BulkResponse>> bulkConsumer =
(request, bulkListener) -> client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener);
BulkProcessor bulkProcessor = BulkProcessor.builder(bulkConsumer, listener)
.setBulkActions(500) // 请求(Index,Update,Delete)的数量达到500,就刷新一次bulk request【默认1000】
// .setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB)) // 累计请求所占的空间达到1M,就刷新一次bulk request【默认5M】
.setConcurrentRequests(0) // 设置允许执行的并发请求数量(默认为1,使用0只允许执行单个请求)
// .setFlushInterval(TimeValue.timeValueSeconds(10L)) // 每隔一段时间刷新一次【默认未设置】
.setBackoffPolicy(BackoffPolicy
.constantBackoff(TimeValue.timeValueSeconds(1L), 3))// 设置一个初始等待1秒并重试3次的Backoff策略
.build();
for(int i = 1; i <= 2000; i++){
bulkProcessor.add(new IndexRequest("books", "java", ""+i)
.source(XContentType.JSON,"title","title_"+i,"user","user_"+i));
} bulkProcessor.flush();
Thread.sleep(2000);
bulkProcessor.close();
return client;
}
输出:【警告可忽略,因为默认分片数量在7.0.0版本会改变,这里提醒一下用户。也就是说,最好先去建立索引(设置好参数),再来添加数据】
请求数量:500
十二月 25, 2018 11:24:06 上午 org.elasticsearch.client.RestClient logResponse
警告: request [POST http://localhost:9200/_bulk?timeout=1m] returned 1 warnings: [299 Elasticsearch-6.5.0-816e6f6 "the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template" "Tue, 25 Dec 2018 03:24:04 GMT"]
Bulk 1 Complete in2044s
请求数量:500
Bulk 2 Complete in333s
请求数量:500
Bulk 3 Complete in235s
请求数量:500
Bulk 4 Complete in244s
查看:
GET books/_search
结果:
{
"took" : 18,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2000,
"max_score" : 1.0,
"hits" : [
{
"_index" : "books",
"_type" : "java",
"_id" : "14",
"_score" : 1.0,
"_source" : {
"title" : "title_14",
"user" : "user_14"
}
},
....
]
}
}
9. Multi-Get API
HTTP 请求
GET /_mget
{
"docs" : [
{
"_index" : "books",
"_type" : "java",
"_id" : "1"
},
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1"
}
]
}
结果:
{
"docs" : [
{
"_index" : "books",
"_type" : "java",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"title" : "title_1",
"user" : "user_1"
}
},
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 13,
"found" : true,
"_source" : {
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない",
"flag" : "1",
"user" : "new_name"
}
}
]
}
GET /twitter/t_doc/_mget
{
"docs" : [
{
"_id" : "1"
},
{
"_id" : "2"
}
]
}
GET /twitter/t_doc/_mget
{
"ids" : ["1", "2"]
}
# 两个方式效果一样
结果:
{
"docs" : [
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "1",
"_version" : 13,
"found" : true,
"_source" : {
"msg" : "達に携帯で連絡取ろうと思ったら 電池が切れてて動かない",
"flag" : "1",
"user" : "new_name"
}
},
{
"_index" : "twitter",
"_type" : "t_doc",
"_id" : "2",
"_version" : 5,
"found" : true,
"_source" : {
"counter" : 5,
"user" : "new_user"
}
}
]
}
Java代码在bulk里面有体现,这里就不赘述了。
10. Reindex API
Reindex不尝试设置目标索引。它不复制源索引的设置。您应该在运行_reindex操作之前设置目标索引,包括设置映射、碎片计数、副本等。
# 复制源索引twitter到目标索引new_twitter
POST _reindex
{
"source": {
"index": "twitter"
},
"dest": {
"index": "new_twitter"
}
}
结果:
{
"took" : 1626,
"timed_out" : false,
"total" : 16,
"updated" : 0,
"created" : 16,
"deleted" : 0,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : ,
"requests_per_second" : -1.0,
"throttled_until_millis" : ,
"failures" : [ ]
}
# 查询
GET /new_twitter/_search
结果:
{
"took" : 9,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 16,
"max_score" : 1.0,
"hits" : [
{
"_index" : "new_twitter",
"_type" : "t_doc",
"_id" : "22",
"_score" : 1.0,
"_source" : {
"user" : "Tony",
"flag" : "1"
}
},
...
]
}
}
为了避免出现冲突导致进程停止,指定:conflicts:proceed
POST _reindex
{
"conflicts": "proceed",
"source": {
"index": "twitter"
},
"dest": {
"index": "new_twitter",
"op_type": "create"
}
}
还可以查询出指定的内容,然后送进目标索引
POST _reindex
{
"source": {
"index": "twitter",
"type": "t_doc",
"query": {
"term": {
"user": "kimchy"
}
}
},
"dest": {
"index": "new_twitter"
}
}
和可以合并多个索引到目标索引
#合并两个索引,跳过冲突【conflicts】,只转移10000条数据【size】
POST _reindex
{
"conflicts": "proceed",
"size": 10000,
"source": {
"index": ["twitter", "new_twitter"],
"type": ["t_doc", "post"]
},
"dest": {
"index": "all_together",
"type": "all_doc"
}
}
还可以使用脚本、从远程服务器reindex、修改目标字段名称,请参考官方文档
Java
/**
* reIndex可用于将文档从一个或多个索引复制到目标索引
* DocWriteRequest.OpType.CREATE 跳过已有的文档
* DocWriteRequest.OpType.INDEX 已有相同id的会被覆盖
* @return
*/
public static RestHighLevelClient reIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
ReindexRequest reindexRequest = new ReindexRequest()
.setSourceIndices("twitter","new_twitter")
.setDestIndex("all_together")
.setDestOpType(DocWriteRequest.OpType.INDEX.getLowercase())
.setDestDocType("all_doc")
// .setSize(10) // copy的文档数
// .setScript(new Script(ScriptType.INLINE, "painless",
// "if (ctx._source.user == 'kimchy') {ctx._source.likes++;}",
// Collections.emptyMap())) // 脚本
.setSourceBatchSize(500); // 默认批量为1000,你可以自己设置批次获取的数量
reindexRequest.setConflicts("proceed"); // 默认情况下,版本冲突会中止_reindex进程(abort)
BulkByScrollResponse bulkResponse = client.reindex(reindexRequest, RequestOptions.DEFAULT);
TimeValue timeTaken = bulkResponse.getTook();
boolean timedOut = bulkResponse.isTimedOut();
long totalDocs = bulkResponse.getTotal();
long updatedDocs = bulkResponse.getUpdated();
long createdDocs = bulkResponse.getCreated();
long deletedDocs = bulkResponse.getDeleted();
long batches = bulkResponse.getBatches();
long noops = bulkResponse.getNoops(); // 跳过的文档数
long versionConflicts = bulkResponse.getVersionConflicts(); // 版本冲突的数量
long bulkRetries = bulkResponse.getBulkRetries(); // bulk重试次数
long searchRetries = bulkResponse.getSearchRetries(); // 搜索重试次数
System.out.println("花费时间:" + timeTaken + ",是否超时:" + timedOut + ",总文档数:" + totalDocs + ",更新数:" +
updatedDocs + ",创建数:" + createdDocs + ",删除数:" + deletedDocs + ",批量次数:" + batches + ",跳过数:" +
noops + ",冲突数:" + versionConflicts + ",bulk重试次数:" + bulkRetries + ",搜索重试次数:" + searchRetries);
List<ScrollableHitSource.SearchFailure> searchFailures = bulkResponse.getSearchFailures(); // 搜索期间的故障
searchFailures.forEach(e -> {
System.err.println("Cause:" + e.getReason().getMessage() + "Index:" + e.getIndex() + ",NodeId:" + e.getNodeId() + ",ShardId:" + e.getShardId());
});
List<BulkItemResponse.Failure> bulkFailures = bulkResponse.getBulkFailures(); // 批量索引期间的故障
bulkFailures.forEach(e -> {
System.err.println("Cause:" + e.getCause().getMessage() + "Index:" + e.getIndex() + ",Type:" + e.getType() + ",Id:" + e.getId());
});
return client;
}
因为这两个索引内容一样,所以会出现 更新数:16,创建数:16
花费时间:1.6s,是否超时:false,总文档数:32,更新数:16,创建数:16,删除数:0,批量次数:1,跳过数:0,冲突数:0,bulk重试次数:0,搜索重试次数:0
查看目标索引(总文档数16)
GET /all_together/_search
结果:
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 16,
"max_score" : 1.0,
"hits" : [
{
"_index" : "all_together",
"_type" : "all_doc",
"_id" : "22",
"_score" : 1.0,
"_source" : {
"user" : "Tony",
"flag" : "1"
}
},
...
]
}
}
--
11. Query
HTTP请求
RequestBodySearch 示例
# sort--mode:min、max、sum、avg、median
# sort--order:asc、desc
# 过滤_source:如果要禁用,"_source": false
# Doc格式化:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-docvalue-fields.html
# 高亮参数:写在外面是全局的,写在field里面是局部的
GET /_search
{
"query" : {
"term" : { "user" : "Tony" }
},
"_source": [ "obj1.*", "obj2.*" ],
"from" : , "size" : ,
"sort" : [
{"price" : {"order" : "asc", "mode" : "avg"}}
],
"script_fields" : {
"my_field1" : {
"script" : {
"lang": "painless",
"source": "doc['flag'].value * params.factor",
"params" : {
"factor" : 2.0
}
}
}
},
"docvalue_fields" : [
{
"field": "postDate",
"format": "yyyy-MM-dd"
}
],
"highlight" : {
"order" : "score",
"pre_tags" : ["<tag1>"],
"post_tags" : ["</tag1>"],
"fields" : {
"_all" : {},
"message" : {"fragment_size" : 150, "number_of_fragments" : 3}
}
}
}
QueryDSL
**Match 与 Match Phrase【这里使用了ik分词器】
# 准备测试数据
PUT test
{
"settings" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
},
"mappings" : {
"msg" : {
"properties" : {
"message" : { "type" : "text","analyzer": "ik_max_word" }
}
}
}
}
PUT test/msg/
{"message" : "她过山车一般的跌宕人生,成了 2018 年我听过的最精彩、也最让人感叹唏嘘的真人真事。"}
PUT test/msg/
{"message" : "她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"}
# match query
GET /_search
{
"query": {
"match" : {
"message" : {
"query" : "今天的主人公",
"analyzer" : "ik_max_word"
}
}
}
} # Match Phrase Query 短语查询
GET /_search
{
"query": {
"match_phrase" : {
"message" : {
"query" : "今天的主人公",
"analyzer" : "ik_max_word"
}
}
}
}
执行match的结果:
执行match phrase的结果
分词器:
POST _analyze
{
"analyzer": "ik_max_word",
"text": "今天的主人公"
}
---
{
"tokens" : [
{
"token" : "今天",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "的",
"start_offset" : 2,
"end_offset" : 3,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "主人公",
"start_offset" : 3,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "主人",
"start_offset" : 3,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "公",
"start_offset" : 5,
"end_offset" : 6,
"type" : "CN_CHAR",
"position" : 4
}
]
}
结论:match会查出包含所有token的结果,而matchPhrase则只会查询“今天的主人公”这一个词组。
**Match Phrase Prefix Query,短语前缀查询,顾名思义:以查询关键字为前缀的查询
# Match Phrase Prefix Query 短语前缀查询
GET /_search
{
"query": {
"match_phrase_prefix" : {
"message" : {
"query" : "她就是",
"analyzer" : "ik_max_word"
}
}
}
}
---
{
"took" : 9,
"timed_out" : false,
"_shards" : {
"total" : 28,
"successful" : 28,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 3.2103658,
"hits" : [
{
"_index" : "test",
"_type" : "msg",
"_id" : "101",
"_score" : 3.2103658,
"_source" : {
"message" : "她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"
}
}
]
}
}
**Query String Query
# 字符串查询 如果多个字段:"fields" : ["content", "name"] 代替default_field
GET /_search
{
"query": {
"query_string" : {
"default_field" : "message",
"query" : "(过山车) OR (伊丽莎白)"
}
}
}
---
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 28,
"successful" : 28,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 0.80259144,
"hits" : [
{
"_index" : "test",
"_type" : "msg",
"_id" : "101",
"_score" : 0.80259144,
"_source" : {
"message" : "她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"
}
},
{
"_index" : "test",
"_type" : "msg",
"_id" : "100",
"_score" : 0.6099695,
"_source" : {
"message" : "她过山车一般的跌宕人生,成了 2018 年我听过的最精彩、也最让人感叹唏嘘的真人真事。"
}
}
]
}
}
以下查询的字段类型都为keyword,适合精确查询
**TermQuery
# Term Query 适合关键字的查询,字段类型为keyword
GET /_search
{
"query": {
"term": {
"exact_value": "Quick Foxes!"
}
}
}
**Terms Query
# Terms Query 对同一个字段匹配多个关键字
GET /_search
{
"query": {
"terms" : { "user" : ["kimchy", "elasticsearch"]}
}
}
**Range Query
# Range Query 范围查询【gt:大于,gte:大于等于,lt:小于,lte:小于等于】
GET _search
{
"query": {
"range" : {
"age" : {
"gte" : 10,
"lte" : 20,
"boost" : 2.0
}
}
}
}
# Range Query 日期【y-年,M-月,w-周,d-日,h-小时,H-小时,m-分钟,s-秒。+1h:+小时,-1d:-天,/d:四舍五入到最近的日期,now:当前时间】比如:now = -- :: now/d = -- ::
GET _search
{
"query": {
"range" : {
"date" : {
"gte" : "now-1d/d",
"lt" : "now/d"
}
}
}
}
GET _search
{
"query": {
"range" : {
"birthday" : {
"gte": "01/01/2012",
"lte": "2013",
"format": "dd/MM/yyyy||yyyy"
}
}
}
}
**Exists Query
# Exist Query 返回在原始字段 message 中至少有一个非空值的文档
GET /_search
{
"query": {
"exists" : { "field" : "message" }
}
}
**Prefix Query
# Prefix Query 前缀查询
GET /_search
{ "query": {
"prefix" : { "user" : "ki" }
}
}
**Wildcard Query
# Wildcard Query 不建议以通配符开头,因为那样性能最低
GET /_search
{
"query": {
"wildcard" : { "user" : "ki*y" }
}
}
**Regexp Query
# Regexp Query 正则查询,你可以使用任何正则表达式,同样不建议以通配符开头
GET /_search
{
"query": {
"regexp":{
"name.first": "s.*y"
}
}
}
**Fuzzy Query
# Fuzzy Query 模糊查询【与SQL的模糊查询不一样,更多信息请自行查阅资料】
GET /_search
{
"query": {
"fuzzy" : { "user" : "ki" }
}
}
**Type Query
# Type Query 查询type下的所有文档
GET /_search
{
"query": {
"type" : {
"value" : "t_doc"
}
}
}
**Ids Query
# Ids Query 根据id列表查询
GET /_search
{
"query": {
"ids" : {
"type" : "t_doc",
"values" : ["1", "4", "100"]
}
}
}
下面是复合查询
# bool查询【它有must、filter、should、must_not四个可选条件】
POST _search
{
"query": {
"bool" : {
"must" : {
"term" : { "user" : "kimchy" }
},
"filter": {
"term" : { "tag" : "tech" }
},
"must_not" : {
"range" : {
"age" : { "gte" : 10, "lte" : 20 }
}
},
"should" : [
{ "term" : { "tag" : "wow" } },
{ "term" : { "tag" : "elasticsearch" } }
],
"minimum_should_match" : ,
"boost" : 1.0
}
}
}
下面是地理查询,初始化数据 参见 19.2 geo_bounding_box查询 地图选点:这里
**地理边界查询【根据两个点确定的矩形,查询落在矩形内的坐标】
# 地理边界查询
GET /china_index/_search
{
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_bounding_box" : {
"location" : {
"top_left" : "23.1706638271,113.0383300781",
"bottom_right" : "22.9760953044,113.5025024414"
}
}
}
}
}
}
结果:
**地理半径查询【根据指定的坐标为中心,查询半径范围内的坐标】
# 地理半径查询
GET /china_index/_search
{
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "20km",
"location" : {
"lat" : 39.6733703918,
"lon" : 116.4111328125
}
}
}
}
}
}
---
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [
{
"_index" : "china_index",
"_type" : "city",
"_id" : "150",
"_score" : 1.0,
"_source" : {
"pName" : "北京市",
"cName" : "大兴区",
"location" : {
"lat" : 39.72684,
"lon" : 116.34159
}
}
}
]
}
}
**地理多边形查询【查找指定的坐标围成的多边形内的坐标】
# 地理多边形查询
GET /china_index/_search
{
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_polygon" : {
"location" : {
"points" : [
"20.4270128143,110.2807617188",
"19.6632802200,109.7094726563",
"19.6839702359,110.8520507813"
]
}
}
}
}
}
}
---
{
"took" : 39,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 4,
"max_score" : 1.0,
"hits" : [
{
"_index" : "china_index",
"_type" : "city",
"_id" : "1555",
"_score" : 1.0,
"_source" : {
"pName" : "海南省",
"cName" : "海口",
"location" : {
"lat" : 20.02,
"lon" : 110.35
}
}
},
{
"_index" : "china_index",
"_type" : "city",
"_id" : "1556",
"_score" : 1.0,
"_source" : {
"pName" : "海南省",
"cName" : "琼山",
"location" : {
"lat" : 19.98,
"lon" : 110.33
}
}
},
{
"_index" : "china_index",
"_type" : "city",
"_id" : "1558",
"_score" : 1.0,
"_source" : {
"pName" : "海南省",
"cName" : "定安",
"location" : {
"lat" : 19.68,
"lon" : 110.31
}
}
},
{
"_index" : "china_index",
"_type" : "city",
"_id" : "1562",
"_score" : 1.0,
"_source" : {
"pName" : "海南省",
"cName" : "澄迈",
"location" : {
"lat" : 19.75,
"lon" : 110.0
}
}
}
]
}
}
**地理形状查询 geo_shape【这个资料比较少,所以我重点研究了一下】
# 存储地理形状的索引
# tree参数:geohash和quadtree,默认geohash
# strategy参数:recursive和term,默认recursive【支持查询:INTERSECTS,DISJOINT,WITHIN,CONTAINS】
# precision参数:精度,单位有in, inch, yd, yard, mi, miles, km, kilometers, m,meters, cm,centimeters, mm, millimeters
# 形状类型解释 | GeoJSON Type | WKT Type | Elasticsearch Type
# 单个地理坐标 Point POINT point
# 给出两个或多个点的任意一条线 LineString LINESTRING linestring
# 闭合的多边形,第一个和最后一个点必须匹配 Polygon POLYGON polygon
# 一系列未连接但可能相关的点 MultiPoint MULTIPOINT multipoint
# 一系列独立的线 MultiLineString MULTILINESTRING multilinestring
# 一系列单独的多边形 MultiPolygon MULTIPOLYGON multipolygon
# 类似于multi系列,但是多种类型不可以共存 GeometryCollection GEOMETRYCOLLECTION geometrycollection
# 仅指定左上角和右下角的矩形 无 BBOX envelope
# 指定中心和半径的圆,默认单位是米 无 无 circle
PUT china_shape_index
{
"settings" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
},
"mappings" : {
"info" : {
"properties" : {
"remark" : { "type" : "keyword" },
"location" : {
"type" : "geo_shape",
"tree" : "geohash",
"precision": "100m"
}
}
}
}
}
添加不同类型的数据
# 注意,如果是数组[经度,纬度]
# 添加一个点
POST /china_shape_index/info
{
"location" : {
"type" : "point",
"coordinates" : [109.1162109375,37.2653099556]
}
}
# 添加一条线
POST /china_shape_index/info
{
"location" : {
"type" : "linestring",
"coordinates" : [[109.1162109375,37.2653099556], [117.6855468750,35.5322262277]]
}
}
# 添加一个形状【我画了个三角形】
POST /china_shape_index/info
{
"location" : {
"type" : "polygon",
"coordinates" : [
[ [114.0380859375, 31.9148675033], [116.6748046875, 30.0690939644],
[111.4453125000,29.7643773752], [114.0380859375, 31.9148675033] ]
]
}
}
# 多个坐标
POST /china_shape_index/info
{
"location" : {
"type" : "multipoint",
"coordinates" : [
[111.4453125000,29.7643773752], [117.6855468750,35.5322262277]
]
}
}
# 由leftTop和bottomRight围成的矩形
POST /china_shape_index/info
{
"location" : {
"type" : "envelope",
"coordinates" : [ [120.2783203125,25.2049411536], [122.2119140625,23.4430889311] ]
}
}
# 圆形
POST /china_shape_index/info
{
"location" : {
"type" : "circle",
"coordinates" : [116.5429687500,39.7071866568],
"radius" : "10km"
}
}
形状查询【这里与我们测试数据(以北京为中心画一个圆)相交了】
# 查询相交的形状。relation可选:intersects, disjoint, within, contains【相交,不相交,内部,包含】
GET /china_shape_index/_search
{
"query":{
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates" : [[114.9169921875,40.5137991550], [118.6083984375,38.7883453551]]
},
"relation": "intersects"
}
}
}
}
}
}
---
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [
{
"_index" : "china_shape_index",
"_type" : "info",
"_id" : "FbvH82cBOwlg01SCD5ab",
"_score" : 1.0,
"_source" : {
"location" : {
"type" : "circle",
"coordinates" : [
116.54296875,
39.7071866568
],
"radius" : "10km"
}
}
}
]
}
}
..
Java【太多了,我只选择部分示例】
全文索引系列:matchQuery、matchAllQuery、matchPhraseQuery、matchPhrasePrefixQuery、multiMatchQuery、commonTermsQuery、queryStringQuery
Term系列:termQuery、termsQuery、rangeQuery、existsQuery、prefixQuery、wildcardQuery、regexpQuery、fuzzyQuery、typeQuery、idsQuery
地理系列:geoDistanceQuery、geoBoundingBoxQuery、geoPolygonQuery、geoShapeQuery
--
/**
* matchQuery
* 排序,高亮查询
* @return
* @throws IOException
*/
public static RestHighLevelClient search() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
try {
SearchResponse search = client.search(new SearchRequest("test")
.source(new SearchSourceBuilder()
.query(QueryBuilders.matchQuery("message", "今天的主人公"))
.sort("_score", SortOrder.DESC) // 根据分数倒序排序
.from(0) // 返回结果开始位置
.size(5) // 返回结果数量
.timeout(TimeValue.timeValueSeconds(10)) // 超时
.highlighter(new HighlightBuilder()
.field("message",200)
.preTags("<pre>").postTags("</pre>"))
), RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println("分数:" + e.getScore() + ",结果:" + e.getSourceAsString());
Map<String, HighlightField> highlightFields = e.getHighlightFields();
for (String key : highlightFields.keySet()){
HighlightField field = highlightFields.get(key);
System.out.println(key + ":" + field.fragments()[0]/* + "," + field.fragments().length*/);
} });
} catch (ElasticsearchException e) {
if(e.status() == RestStatus.NOT_FOUND){
// TODO
System.out.println("Index Not Found-" + e.getIndex());
}
}
return client;
}
输出:
Hits:
分数:3.421475,结果:{"message":"她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"}
message:她就是我们<pre>今天</pre><pre>的</pre><pre>主人</pre><pre>公</pre>,伊丽莎白·福尔摩斯(Elizabeth Holmes)。
分数:0.26740497,结果:{"message":"她过山车一般的跌宕人生,成了 2018 年我听过的最精彩、也最让人感叹唏嘘的真人真事。"}
message:她过山车一般<pre>的</pre>跌宕人生,成了 年我听过<pre>的</pre>最精彩、也最让人感叹唏嘘<pre>的</pre>真人真事。
--
/**
* matchPhraseQuery
* 排序,高亮查询
* @return
* @throws IOException
*/
public static RestHighLevelClient search() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
try {
SearchResponse search = client.search(new SearchRequest("test")
.source(new SearchSourceBuilder()
.query(QueryBuilders.matchPhraseQuery("message", "今天的主人公"))
.sort("_score", SortOrder.DESC) // 根据分数倒序排序
.from(0) // 返回结果开始位置
.size(5) // 返回结果数量
.timeout(TimeValue.timeValueSeconds(10)) // 超时
.highlighter(new HighlightBuilder()
.field("message",200)
.preTags("<pre>").postTags("</pre>"))
), RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println("分数:" + e.getScore() + ",结果:" + e.getSourceAsString());
Map<String, HighlightField> highlightFields = e.getHighlightFields();
for (String key : highlightFields.keySet()){
HighlightField field = highlightFields.get(key);
System.out.println(key + ":" + field.fragments()[0]/* + "," + field.fragments().length*/);
} });
} catch (ElasticsearchException e) {
if(e.status() == RestStatus.NOT_FOUND){
// TODO
System.out.println("Index Not Found-" + e.getIndex());
}
}
return client;
}
结果:
Hits:
分数:3.421475,结果:{"message":"她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"}
message:她就是我们<pre>今天</pre><pre>的</pre><pre>主人</pre><pre>公</pre>,伊丽莎白·福尔摩斯(Elizabeth Holmes)。
--
/**
* queryStringQuery
* 排序,高亮查询
* @return
* @throws IOException
*/
public static RestHighLevelClient search() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
try {
SearchResponse search = client.search(new SearchRequest("test")
.source(new SearchSourceBuilder()
.query(QueryBuilders.queryStringQuery("今天的主人公").field("message"))
.sort("_score", SortOrder.DESC) // 根据分数倒序排序
.from(0) // 返回结果开始位置
.size(5) // 返回结果数量
.timeout(TimeValue.timeValueSeconds(10)) // 超时
.highlighter(new HighlightBuilder()
.field("message",200)
.preTags("<pre>").postTags("</pre>"))
), RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println("分数:" + e.getScore() + ",结果:" + e.getSourceAsString());
Map<String, HighlightField> highlightFields = e.getHighlightFields();
for (String key : highlightFields.keySet()){
HighlightField field = highlightFields.get(key);
System.out.println(key + ":" + field.fragments()[0]/* + "," + field.fragments().length*/);
} });
} catch (ElasticsearchException e) {
if(e.status() == RestStatus.NOT_FOUND){
// TODO
System.out.println("Index Not Found-" + e.getIndex());
}
}
return client;
}
结果:
Hits:
分数:3.421475,结果:{"message":"她就是我们今天的主人公,伊丽莎白·福尔摩斯(Elizabeth Holmes)。"}
message:她就是我们<pre>今天</pre><pre>的</pre><pre>主人</pre><pre>公</pre>,伊丽莎白·福尔摩斯(Elizabeth Holmes)。
分数:0.26740497,结果:{"message":"她过山车一般的跌宕人生,成了 2018 年我听过的最精彩、也最让人感叹唏嘘的真人真事。"}
message:她过山车一般<pre>的</pre>跌宕人生,成了 年我听过<pre>的</pre>最精彩、也最让人感叹唏嘘<pre>的</pre>真人真事。
下面测试term系列
# 准备测试数据
PUT users
{
"settings" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
},
"mappings" : {
"info" : {
"properties" : {
"username" : { "type" : "keyword" },
"address" : { "type" : "text","analyzer": "ik_max_word" }
}
}
}
}
PUT users/info/
{"username" : "孙行者","address" : "软件产业基地1栋B座大堂","age": 15}
PUT users/info/
{"username" : "孙大圣","address" : "万达北路710号戈雅公寓105号商铺","age": 26}
PUT users/info/
{"username" : "西蒙·胡塞·德·拉·桑迪西玛·特里尼达·玻利瓦尔·帕拉修斯·伊·布兰科","address" : "滨河大道7009号","age": 7}
PUT users/info/
{"username" : "奥斯特洛夫斯基","address" : "光谷二路225号食堂","age": 30}
PUT users/info/
{"username" : "Brfxxccxxmnpcccclllmmnprxvclmnckssqlbb1111b","address" : "海淀紫竹院路甲2号商业05号","age": 18}
# 查看
GET /users/_search
--
/**
* termQuery
* rangeQuery
* prefixQuery
* wildcardQuery
* @return
* @throws IOException
*/
public static RestHighLevelClient termSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("users");
String[] includeFields = new String[] {"username", "age"};
String[] excludeFields = new String[] {"addr*"};
request.source(new SearchSourceBuilder()
// 关键字查询
//.query(QueryBuilders.termsQuery("username", "奥斯特洛夫斯基"))
// 范围查询
//.query(QueryBuilders.rangeQuery("age").lt(20))
// 前缀查询
//.query(QueryBuilders.prefixQuery("username", "孙"))
// 通配符查询
.query(QueryBuilders.wildcardQuery("username", "西蒙*"))
.fetchSource(includeFields, excludeFields) // 过滤源
.from(0)
.size(5)
.sort("age", SortOrder.ASC)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"age":7,"username":"西蒙·胡塞·德·拉·桑迪西玛·特里尼达·玻利瓦尔·帕拉修斯·伊·布兰科"}
下面测试聚合查询 Aggregation
/**
* 聚合查询
* @return
* @throws IOException
*/
public static RestHighLevelClient aggSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("users");
request.source(new SearchSourceBuilder()
.query(QueryBuilders.matchAllQuery())
.aggregation(AggregationBuilders.avg("ageAVG").field("age"))
.from(0)
.size(5)
.sort("age", SortOrder.ASC)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
Avg avg = search.getAggregations().get("ageAVG");
System.out.println("平均值:" + avg.getValue());
return client;
}
结果:
Hits:
{"username":"西蒙·胡塞·德·拉·桑迪西玛·特里尼达·玻利瓦尔·帕拉修斯·伊·布兰科","address":"滨河大道7009号","age":7}
{"username":"孙行者","address":"软件产业基地1栋B座大堂","age":15}
{"username":"Brfxxccxxmnpcccclllmmnprxvclmnckssqlbb1111b","address":"海淀紫竹院路甲2号商业05号","age":18}
{"username":"孙大圣","address":"万达北路710号戈雅公寓105号商铺","age":26}
{"username":"奥斯特洛夫斯基","address":"光谷二路225号食堂","age":30}
平均值:19.2
下面测试复合查询 bool
/**
* 复合查询
* @return
* @throws IOException
*/
public static RestHighLevelClient boolSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("users");
request.source(new SearchSourceBuilder()
.query(QueryBuilders.boolQuery()
.must(QueryBuilders.rangeQuery("age").gt(20))
.mustNot(QueryBuilders.termQuery("username","孙大圣"))
)
.from(0)
.size(5)
.sort("age", SortOrder.ASC)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"username":"奥斯特洛夫斯基","address":"光谷二路225号食堂","age":30}
下面测试地理查询
--矩形
public static RestHighLevelClient geoSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("china_index");
request.source(new SearchSourceBuilder()
// 地理边界查询,设置字段名,top Left和bottom Right
.query(QueryBuilders.geoBoundingBoxQuery("location").setCorners(23.1706638271,113.0383300781,22.9760953044,113.5025024414))
.from(0)
.size(100)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"pName":"广东省","cName":"广州","location":{"lat":23.12908,"lon":113.26436}}
{"pName":"广东省","cName":"越秀","location":{"lat":23.12901,"lon":113.2668}}
{"pName":"广东省","cName":"荔湾","location":{"lat":23.12586,"lon":113.24428}}
{"pName":"广东省","cName":"海珠","location":{"lat":23.08331,"lon":113.3172}}
{"pName":"广东省","cName":"天河","location":{"lat":23.12463,"lon":113.36199}}
{"pName":"广东省","cName":"白云","location":{"lat":23.157032,"lon":113.273238}}
{"pName":"广东省","cName":"佛山","location":{"lat":23.02185,"lon":113.12192}}
{"pName":"广东省","cName":"禅城","location":{"lat":23.00944,"lon":113.12249}}
{"pName":"广东省","cName":"南海","location":{"lat":23.02882,"lon":113.14278}}
--圆形
public static RestHighLevelClient geoSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("china_index");
List<GeoPoint> list = new ArrayList<>();
list.add(new GeoPoint(20.4270128143,110.2807617188));
list.add(new GeoPoint(19.6632802200,109.7094726563));
list.add(new GeoPoint(19.6839702359,110.8520507813));
request.source(new SearchSourceBuilder()
// 地理半径查询,设置字段名,纬度,经度,距离,距离类型
.query(QueryBuilders.geoDistanceQuery("location").point(39.6733703918,116.4111328125).distance(50, DistanceUnit.KILOMETERS))
.from(0)
.size(100)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"pName":"北京市","cName":"东城区","location":{"lat":39.92855,"lon":116.41637}}
{"pName":"北京市","cName":"西城区","location":{"lat":39.91231,"lon":116.36611}}
{"pName":"北京市","cName":"朝阳区","location":{"lat":39.927289,"lon":116.4498}}
{"pName":"北京市","cName":"丰台区","location":{"lat":39.85856,"lon":116.28616}}
{"pName":"北京市","cName":"石景山区","location":{"lat":39.90569,"lon":116.22299}}
{"pName":"北京市","cName":"海淀区","location":{"lat":39.95933,"lon":116.29845}}
{"pName":"北京市","cName":"通州区","location":{"lat":39.916195,"lon":116.662852}}
{"pName":"北京市","cName":"大兴区","location":{"lat":39.72684,"lon":116.34159}}
{"pName":"北京市","cName":"房山区","location":{"lat":39.74788,"lon":116.14294}}
{"pName":"北京市","cName":"门头沟区","location":{"lat":39.94048,"lon":116.10146}}
{"pName":"河北省","cName":"涿县","location":{"lat":39.48,"lon":115.98}}
{"pName":"河北省","cName":"廊坊","location":{"lat":39.53,"lon":116.7}}
{"pName":"河北省","cName":"安次","location":{"lat":39.52,"lon":116.69}}
{"pName":"河北省","cName":"固安","location":{"lat":39.44,"lon":116.29}}
{"pName":"河北省","cName":"永清","location":{"lat":39.32,"lon":116.48}}
--多边形
public static RestHighLevelClient geoSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("china_index");
List<GeoPoint> list = new ArrayList<>();
list.add(new GeoPoint(20.4270128143,110.2807617188));
list.add(new GeoPoint(19.6632802200,109.7094726563));
list.add(new GeoPoint(19.6839702359,110.8520507813));
request.source(new SearchSourceBuilder()
// 地理形状查询,设置字段名,围成多边形状的坐标列表
.query(QueryBuilders.geoPolygonQuery("location", list))
.from(0)
.size(100)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"pName":"海南省","cName":"海口","location":{"lat":20.02,"lon":110.35}}
{"pName":"海南省","cName":"琼山","location":{"lat":19.98,"lon":110.33}}
{"pName":"海南省","cName":"定安","location":{"lat":19.68,"lon":110.31}}
{"pName":"海南省","cName":"澄迈","location":{"lat":19.75,"lon":110.0}}
-- geo_shape查询
/**
* 地理形状查询
* https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-shape.html
* 已知Builder实现:CircleBuilder, EnvelopeBuilder, GeometryCollectionBuilder, LineStringBuilder, MultiLineStringBuilder, MultiPointBuilder, MultiPolygonBuilder, PointBuilder, PolygonBuilder
* @return
* @throws IOException
*/
public static RestHighLevelClient geoShapeSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
SearchRequest request = new SearchRequest("china_shape_index");
request.source(new SearchSourceBuilder()
.query(QueryBuilders.geoShapeQuery("location",
// 查询类型为envelope就用EnvelopeBuilder. topLeft,bottomRight. new Coordinate(经度,纬度)
new EnvelopeBuilder(new Coordinate(114.9169921875,40.5137991550),new Coordinate(118.6083984375,38.7883453551)))
.relation(ShapeRelation.INTERSECTS)
)
// ShapeBuilders已经过时,不推荐使用了
//.query(QueryBuilders.geoShapeQuery("location",ShapeBuilders.newEnvelope(new Coordinate(114.9169921875,40.5137991550),new Coordinate(118.6083984375,38.7883453551))))
.from(0)
.size(100)
);
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
System.out.println("Hits:" + search.getHits().totalHits);
search.getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
return client;
}
结果:
Hits:
{"location":{"type":"circle","coordinates":[116.54296875,39.7071866568],"radius":"10km"}}
12. Search
**search scroll
/**
* scrollSearch
* @return
* @throws IOException
*/
public static RestHighLevelClient scrollSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
// 设置超时
final Scroll scroll = new Scroll(TimeValue.timeValueMinutes(1L));
SearchRequest request = new SearchRequest("books");
request.source(new SearchSourceBuilder()
.query(QueryBuilders.matchAllQuery())
.sort("_id",SortOrder.ASC)
.size(500)) // 每批大小
.scroll(scroll); // 设置scroll
SearchResponse searchResponse = client.search(request, RequestOptions.DEFAULT); // 执行查询
String scrollId = searchResponse.getScrollId();
SearchHit[] hits = searchResponse.getHits().getHits();
while(hits != null && hits.length > 0) {
System.out.println("========Begin=======");
for (SearchHit hit : hits) {
System.out.println(hit.getSourceAsString());
}
System.out.println("========End======="); System.out.println("Size:" + hits.length + ",Scroll:" + scrollId);
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId)
.scroll(scroll); // 设置SearchScrollRequest
searchResponse = client.scroll(scrollRequest, RequestOptions.DEFAULT); // 拉取新的数据
scrollId = searchResponse.getScrollId();
hits = searchResponse.getHits().getHits();
};
// 当scroll超时时,Search Scroll API使用的搜索上下文将自动删除
ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
clearScrollRequest.addScrollId(scrollId);
ClearScrollResponse clearScrollResponse = client.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);
boolean succeeded = clearScrollResponse.isSucceeded();
System.out.println("ClearScroll:" + succeeded);
return client;
}
结果:【一共2000条,省略了部分结果】
========Begin=======
{"title":"title_1","user":"user_1"}
{"title":"title_10","user":"user_10"}
{"title":"title_100","user":"user_100"}
{"title":"title_1000","user":"user_1000"}
...
{"title":"title_1448","user":"user_1448"}
========End=======
Size:,Scroll:DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAM7QFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADOzxZ3Q3I2VXowalR2R2FUSGg1YWNOeEtBAAAAAAAAztEWd0NyNlV6MGpUdkdhVEhoNWFjTnhLQQAAAAAAAM7SFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADO0xZ3Q3I2VXowalR2R2FUSGg1YWNOeEtB
========Begin=======
...
{"title":"title_1899","user":"user_1899"}
========End=======
Size:,Scroll:DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAM7QFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADOzxZ3Q3I2VXowalR2R2FUSGg1YWNOeEtBAAAAAAAAztEWd0NyNlV6MGpUdkdhVEhoNWFjTnhLQQAAAAAAAM7SFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADO0xZ3Q3I2VXowalR2R2FUSGg1YWNOeEtB
========Begin=======
{"title":"title_19","user":"user_19"}
...
{"title":"title_548","user":"user_548"}
========End=======
Size:,Scroll:DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAM7QFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADOzxZ3Q3I2VXowalR2R2FUSGg1YWNOeEtBAAAAAAAAztEWd0NyNlV6MGpUdkdhVEhoNWFjTnhLQQAAAAAAAM7SFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADO0xZ3Q3I2VXowalR2R2FUSGg1YWNOeEtB
========Begin=======
{"title":"title_549","user":"user_549"}
...
{"title":"title_6","user":"user_6"}
{"title":"title_60","user":"user_60"}
{"title":"title_600","user":"user_600"}
...
{"title":"title_699","user":"user_699"}
{"title":"title_7","user":"user_7"}
{"title":"title_70","user":"user_70"}
{"title":"title_700","user":"user_700"}
...
{"title":"title_799","user":"user_799"}
{"title":"title_8","user":"user_8"}
{"title":"title_80","user":"user_80"}
{"title":"title_800","user":"user_800"}
...
{"title":"title_899","user":"user_899"}
{"title":"title_9","user":"user_9"}
{"title":"title_90","user":"user_90"}
{"title":"title_900","user":"user_900"}
...
{"title":"title_999","user":"user_999"}
========End=======
Size:,Scroll:DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAM7QFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADOzxZ3Q3I2VXowalR2R2FUSGg1YWNOeEtBAAAAAAAAztEWd0NyNlV6MGpUdkdhVEhoNWFjTnhLQQAAAAAAAM7SFndDcjZVejBqVHZHYVRIaDVhY054S0EAAAAAAADO0xZ3Q3I2VXowalR2R2FUSGg1YWNOeEtB
ClearScroll:true
**Multi-Search
HTTP请求
# 格式:一行header一行body
GET users/_msearch
{}
{"query": {"terms" : { "username" : ["孙行者", "孙大圣"]}}}
{}
{"query": {"term" : { "username" : "Brfxxccxxmnpcccclllmmnprxvclmnckssqlbb1111b"}}}
---
{
"responses" : [
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 1.0,
"hits" : [
{
"_index" : "users",
"_type" : "info",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"username" : "孙行者",
"address" : "软件产业基地1栋B座大堂",
"age" : 15
}
},
{
"_index" : "users",
"_type" : "info",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"username" : "孙大圣",
"address" : "万达北路710号戈雅公寓105号商铺",
"age" : 26
}
}
]
},
"status" :
},
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.3862944,
"hits" : [
{
"_index" : "users",
"_type" : "info",
"_id" : "5",
"_score" : 1.3862944,
"_source" : {
"username" : "Brfxxccxxmnpcccclllmmnprxvclmnckssqlbb1111b",
"address" : "海淀紫竹院路甲2号商业05号",
"age" : 18
}
}
]
},
"status" :
}
]
}
Java
public static RestHighLevelClient multiSearch() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
MultiSearchRequest request = new MultiSearchRequest();
// 第一个查询
SearchRequest firstSearchRequest = new SearchRequest("users");
firstSearchRequest.source(new SearchSourceBuilder().query(QueryBuilders.termsQuery("username","孙大圣")));
request.add(firstSearchRequest);
// 第二个查询
SearchRequest secondSearchRequest = new SearchRequest("users");
secondSearchRequest.source(new SearchSourceBuilder().query(QueryBuilders.prefixQuery("username", "Brfxx")));
request.add(secondSearchRequest); MultiSearchResponse msearch = client.msearch(request, RequestOptions.DEFAULT);
MultiSearchResponse.Item[] responses = msearch.getResponses();
for (MultiSearchResponse.Item i : responses){
System.out.println("========" + i.getResponse().status().name());
i.getResponse().getHits().forEach(e -> {
System.out.println(e.getSourceAsString());
});
}
return client;
}
结果:
========OK
{"username":"孙大圣","address":"万达北路710号戈雅公寓105号商铺","age":26}
========OK
{"username":"Brfxxccxxmnpcccclllmmnprxvclmnckssqlbb1111b","address":"海淀紫竹院路甲2号商业05号","age":18}
13. Cluster
HTTP请求
GET _cluster/health
---
{
"cluster_name" : "my-elasticsearch",
"status" : "yellow",
"timed_out" : false,
"number_of_nodes" : 1,
"number_of_data_nodes" : 1,
"active_primary_shards" : 15,
"active_shards" : 15,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 14,
"delayed_unassigned_shards" : 0,
"number_of_pending_tasks" : 0,
"number_of_in_flight_fetch" : 0,
"task_max_waiting_in_queue_millis" : 0,
"active_shards_percent_as_number" : 51.724137931034484
}
获取集群状态
GET /_cluster/state
---
{
"cluster_name" : "my-elasticsearch",
"compressed_size_in_bytes" : 14766,
"cluster_uuid" : "QmDZ773JR_ip0AN6jEdWtA",
"version" : 33,
"state_uuid" : "l8WJu9BzTfGsIKba_gsodA",
"master_node" : "wCr6Uz0jTvGaTHh5acNxKA",
"blocks" : { },
"nodes" : {
"wCr6Uz0jTvGaTHh5acNxKA" : {
"name" : "wCr6Uz0",
"ephemeral_id" : "qFZoP0iWQDm3EWM3TDb_vg",
"transport_address" : "127.0.0.1:9300",
"attributes" : {
"ml.machine_memory" : "8510087168",
"xpack.installed" : "true",
"ml.max_open_jobs" : "20",
"ml.enabled" : "true"
}
}
},
...
}
GET /_cluster/stats?human&pretty GET /_cluster/settings # 设置集群settings
# . transient cluster settings
# . persistent cluster settings
# . settings in the elasticsearch.yml configuration file.
PUT /_cluster/settings
{
"persistent" : {
"indices.recovery.max_bytes_per_sec" : "50mb"
}
} # explain索引【三个参数必须的】
GET /_cluster/allocation/explain
{
"index": "china_index",
"shard": 0,
"primary": true
} # 节点统计数据
GET /_nodes/stats
GET /_nodes/nodeId1,nodeId2/stats # return just indices
GET /_nodes/stats/indices # return just os and process
GET /_nodes/stats/os,process # return just process for node with IP address 10.0.0.1
GET /_nodes/10.0.0.1/stats/process # 每个节点的实用信息
GET _nodes/usage
GET _nodes/nodeId1,nodeId2/usage
Java
/**
* 集群信息
* @return
*/
public static RestHighLevelClient info() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
boolean ping = client.ping(RequestOptions.DEFAULT);
System.out.println("Ping:" + ping);
MainResponse info = client.info(RequestOptions.DEFAULT);
ClusterName clusterName = info.getClusterName();
String clusterUuid = info.getClusterUuid();
String nodeName = info.getNodeName();
Version version = info.getVersion();
Build build = info.getBuild();
System.out.println("集群名称:" + clusterName.value());
System.out.println("Uuid:" + clusterUuid);
System.out.println("节点名称:" + nodeName);
System.out.println("Version:" + version.toString());
System.out.println("Bulid:" + build.toString());
return client;
}
结果:
Ping:true
集群名称:my-elasticsearch
Uuid:QmDZ773JR_ip0AN6jEdWtA
节点名称:wCr6Uz0
Version:6.5.
Bulid:[default][zip][816e6f6][--09T18::.352602Z]
14. Indices
14.1 分词器
# 标准分词器
GET _analyze
{
"analyzer" : "standard",
"text" : ["this is a test", "the second text"]
}
# IK分词器
GET _analyze
{
"analyzer" : "ik_smart",
"text" : ["真好玩", "一个叫yado的博士找到他,希望buzzo和他的团伙去帮他散布一种叫做joy的毒品"]
}
--
/**
* 分词器
* @return
* @throws IOException
*/
public static RestHighLevelClient analyze() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
AnalyzeRequest request = new AnalyzeRequest();
request.text("真好玩", "一个叫yado的博士找到他,希望buzzo和他的团伙去帮他散布一种叫做joy的毒品");
request.analyzer("ik_smart");
AnalyzeResponse response = client.indices().analyze(request, RequestOptions.DEFAULT);
List<AnalyzeResponse.AnalyzeToken> tokens = response.getTokens(); for(AnalyzeResponse.AnalyzeToken t : tokens){
int endOffset = t.getEndOffset();
int position = t.getPosition();
int positionLength = t.getPositionLength();
int startOffset = t.getStartOffset();
String term = t.getTerm();
String type = t.getType();
System.out.println("Start:" + startOffset + ",End:" + endOffset + ",Position:" + position + ",Length:" + positionLength +
",Term:" + term + ",Type:" + type);
}
return client;
}
结果:
Start:,End:,Position:,Length:,Term:真好玩,Type:CN_WORD
Start:,End:,Position:,Length:,Term:一个,Type:CN_WORD
Start:,End:,Position:,Length:,Term:叫,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:yado,Type:ENGLISH
Start:,End:,Position:,Length:,Term:的,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:博士,Type:CN_WORD
Start:,End:,Position:,Length:,Term:找,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:到他,Type:CN_WORD
Start:,End:,Position:,Length:,Term:希望,Type:CN_WORD
Start:,End:,Position:,Length:,Term:buzzo,Type:ENGLISH
Start:,End:,Position:,Length:,Term:和他,Type:CN_WORD
Start:,End:,Position:,Length:,Term:的,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:团伙,Type:CN_WORD
Start:,End:,Position:,Length:,Term:去,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:帮,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:他,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:散布,Type:CN_WORD
Start:,End:,Position:,Length:,Term:一种,Type:CN_WORD
Start:,End:,Position:,Length:,Term:叫做,Type:CN_WORD
Start:,End:,Position:,Length:,Term:joy,Type:ENGLISH
Start:,End:,Position:,Length:,Term:的,Type:CN_CHAR
Start:,End:,Position:,Length:,Term:毒品,Type:CN_WORD
14.2 Create Index
创建索引限制
小写字母 不能包含 \, /, *, ?, ", <, >, |, ` ` (space character), ,, # 7.0之前的索引可能包含冒号(:),但是不赞成这样做,7.0+不支持这样做 不能以-,_,+开头 不能. or .. 长度不能超过255字节
HTTP请求
# 创建索引
PUT twitter
{
"settings" : {
"number_of_shards" : 3,
"number_of_replicas" : 2
},
"mappings" : {
"my_doc" : {
"properties" : {
"field1" : { "type" : "text" }
}
}
}
}
Java
public static RestHighLevelClient createIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
CreateIndexRequest request = new CreateIndexRequest("twitter");
request.settings(Settings.builder()
.put("index.number_of_shards", 3)
.put("index.number_of_replicas", 2))
// 设置mapping
//.mapping("t_doc", "field1","type=keyword,store=true") // Object key-pairs
.mapping("t_doc", jsonBuilder()
.startObject()
.startObject("t_doc")
.startObject("properties")
.startObject("msg")
.field("type","text")
.endObject()
.endObject()
.endObject()
.endObject())
// 别名
.alias(new Alias("my_index_alias"))
// 创建超时
.timeout(TimeValue.timeValueMinutes(2))
// 连接到主节点超时时间
.masterNodeTimeout(TimeValue.timeValueMinutes(1))
// 在创建索引返回响应之前等待的活动碎片副本的数量
.waitForActiveShards(2);
CreateIndexResponse indexResponse = client.indices().create(request, RequestOptions.DEFAULT);
boolean acknowledged = indexResponse.isAcknowledged();
boolean shardsAcknowledged = indexResponse.isShardsAcknowledged();
System.out.println(acknowledged);
return client;
}
14.3 Delete Index
# 删除索引
DELETE /twitter
Java
public static RestHighLevelClient deleteIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
DeleteIndexRequest request = new DeleteIndexRequest();
// 使用_all或者通配符*可以删除所有索引。如果要禁用:action.destructive_requires_name=true
request.indices("twitter","it_book","car","school","story"); try {
AcknowledgedResponse acknowledgedResponse = client.indices().delete(request, RequestOptions.DEFAULT);
boolean acknowledged = acknowledgedResponse.isAcknowledged();
System.out.println(acknowledged);
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.NOT_FOUND) {
System.err.println("Index Not Found");
}
}
return client;
}
14.4 Indices Exists
# 索引是否存在
HEAD /china_index
# Type是否存在
HEAD /china_index/_mapping/city
Java
public static RestHighLevelClient existIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetIndexRequest request = new GetIndexRequest();
request.indices("china_index");
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
return client;
}
14.5 Open Index
# 开启索引
POST /twitter/_open
Java
public static RestHighLevelClient openIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
OpenIndexRequest request = new OpenIndexRequest("twitter");
request.timeout(TimeValue.timeValueMinutes(2));
OpenIndexResponse open = client.indices().open(request, RequestOptions.DEFAULT);
boolean acknowledged = open.isAcknowledged();
boolean shardsAcked = open.isShardsAcknowledged();
System.out.println(acknowledged);
return client;
}
14.6 Close Index
# 关闭索引
POST /twitter/_close
Java
public static RestHighLevelClient closeIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
CloseIndexRequest request = new CloseIndexRequest("twitter");
request.timeout(TimeValue.timeValueMinutes(2));
AcknowledgedResponse closeIndexResponse = client.indices().close(request, RequestOptions.DEFAULT);
boolean acknowledged = closeIndexResponse.isAcknowledged();
System.out.println(acknowledged);
return client;
}
14.7 Shrink Index【压缩索引】
# 准备源索引
PUT my_source_index
{
"settings" : {
"number_of_shards" : 4,
"number_of_replicas" : 2,
"index.blocks.write": true
}
}
--
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_source_index"
}
压缩操作
POST my_source_index/_shrink/my_target_index?copy_settings=true
{
"settings": {
"index.number_of_shards": 1,
"index.number_of_replicas": 1,
"index.codec": "best_compression"
},
"aliases": {
"my_search_indices": {}
}
}
--
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_target_index"
}
查看索引信息
GET my_source_index
结果:
{
"my_source_index" : {
"aliases" : { },
"mappings" : { },
"settings" : {
"index" : {
"number_of_shards" : "4",
"blocks" : {
"write" : "true"
},
"provided_name" : "my_source_index",
"creation_date" : "",
"number_of_replicas" : "",
"uuid" : "tSYNLldWQNCOlR5NJGaH9g",
"version" : {
"created" : "6050099"
}
}
}
}
}
---
GET my_target_index
结果:
{
"my_target_index" : {
"aliases" : {
"my_search_indices" : { }
},
"mappings" : { },
"settings" : {
"index" : {
"allocation" : {
"max_retries" : "1"
},
"shrink" : {
"source" : {
"name" : "my_source_index",
"uuid" : "tSYNLldWQNCOlR5NJGaH9g"
}
},
"blocks" : {
"write" : "true"
},
"provided_name" : "my_target_index",
"creation_date" : "",
"number_of_replicas" : "",
"uuid" : "F976xviGQ965JU9patwQnA",
"version" : {
"created" : "6050099",
"upgraded" : "6050099"
},
"codec" : "best_compression",
"routing" : {
"allocation" : {
"initial_recovery" : {
"_id" : "wCr6Uz0jTvGaTHh5acNxKA"
}
}
},
"number_of_shards" : "",
"routing_partition_size" : "",
"resize" : {
"source" : {
"name" : "my_source_index",
"uuid" : "tSYNLldWQNCOlR5NJGaH9g"
}
}
}
}
}
}
Java
/**
* 压缩索引(将索引压缩为主分片数更少的新索引)
* 目标索引中请求的主碎片数量必须是源索引中碎片数量的一个因数。例如,有8个主碎片的索引可以压缩为4个、2个或1个主碎片;
* 或者有15个主碎片的索引可以压缩为5个、3个或1个主碎片。
* 过程:
* 首先,它创建一个新的目标索引,其定义与源索引相同,但是主碎片的数量较少
* 然后它将段从源索引硬链接到目标索引
* 最后,它将目标索引恢复为一个刚刚重新打开的closed index
* @return
*/
public static RestHighLevelClient shrinkIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
ResizeRequest resizeRequest = new ResizeRequest("target_index", "source_index");
resizeRequest.getTargetIndexRequest()
.alias(new Alias("target_index_alias"))
.settings(Settings.builder()
.put("index.number_of_shards", 2)
);
ResizeResponse resizeResponse = client.indices().shrink(resizeRequest, RequestOptions.DEFAULT);
boolean acknowledged = resizeResponse.isAcknowledged();
boolean shardsAcked = resizeResponse.isShardsAcknowledged();
System.out.println(acknowledged);
return client;
}
14.8 Split Index
准备数据
# index.number_of_routing_shards must be >= index.number_of_shards
PUT my_source_index2
{
"settings" : {
"number_of_shards" : 2,
"index.number_of_routing_shards" : 8,
"index.blocks.write": true
}
}
--
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_source_index2"
}
拆分
# 拆分索引
POST my_source_index2/_split/my_target_index2?copy_settings=true
{
"settings": {
"index.number_of_shards": 4
},
"aliases": {
"my_search_indices": {}
}
}
--
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_target_index2"
}
查看索引
GET my_source_index2
结果:
{
"my_source_index2" : {
"aliases" : { },
"mappings" : { },
"settings" : {
"index" : {
"number_of_shards" : "2",
"blocks" : {
"write" : "true"
},
"provided_name" : "my_source_index2",
"creation_date" : "",
"number_of_replicas" : "",
"uuid" : "iuDENl3uQku0Ef6flu8S-Q",
"version" : {
"created" : "6050099"
}
}
}
}
}
---
GET my_target_index2
结果:
{
"my_target_index2" : {
"aliases" : {
"my_search_indices" : { }
},
"mappings" : { },
"settings" : {
"index" : {
"number_of_shards" : "4",
"routing_partition_size" : "1",
"blocks" : {
"write" : "true"
},
"provided_name" : "my_target_index2",
"resize" : {
"source" : {
"name" : "my_source_index2",
"uuid" : "iuDENl3uQku0Ef6flu8S-Q"
}
},
"creation_date" : "",
"number_of_replicas" : "",
"uuid" : "ZBnocs2bSker45kb2lXoRw",
"version" : {
"created" : "6050099",
"upgraded" : "6050099"
}
}
}
}
}
Java
/**
* 拆分索引(每个原始的主碎片被拆分为新索引中的两个或多个主碎片)
* 重要:源索引必须在创建的时候指定number_of_routing_shards参数,以便将来有拆分的需要。在Elasticsearch 7.0这个前提被移除。
* 索引能被拆分的次数以及每个主分片能被拆分的个数取决于index.number_of_routing_shards参数的设置
* 过程:
* 首先,它创建一个新的目标索引,其定义与源索引相同,但是具有更多的主碎片
* 然后它将段从源索引硬链接到目标索引
* 创建了低级文件之后,所有文档将再次散列以删除属于不同碎片的文档
* 最后,它将目标索引恢复为一个刚刚重新打开的closed index
* @return
*/
public static RestHighLevelClient splitIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
ResizeRequest resizeRequest = new ResizeRequest("target_index", "source_index");
resizeRequest.timeout(TimeValue.timeValueSeconds(2))
.masterNodeTimeout(TimeValue.timeValueMinutes(1))
.setResizeType(ResizeType.SPLIT); // 类型是拆分
resizeRequest.getTargetIndexRequest()
.alias(new Alias("target_index_alias"))
.settings(Settings.builder()
.put("index.number_of_shards", 4));
ResizeResponse resizeResponse = client.indices().split(resizeRequest, RequestOptions.DEFAULT);
boolean acknowledged = resizeResponse.isAcknowledged();
boolean shardsAcked = resizeResponse.isShardsAcknowledged();
return client;
}
14.9 Refresh
# 刷新索引【默认定期刷新】
POST /kimchy,elasticsearch/_refresh
POST /_refresh
--
/**
* 刷新索引
* 默认情况下,刷新是定期调度的
* @return
*/
public static RestHighLevelClient refreshIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
RefreshRequest refreshRequest = new RefreshRequest("index_1","index_2"); try {
RefreshResponse refresh = client.indices().refresh(refreshRequest, RequestOptions.DEFAULT);
int totalShards = refresh.getTotalShards();
int successfulShards = refresh.getSuccessfulShards();
int failedShards = refresh.getFailedShards();
DefaultShardOperationFailedException[] failures = refresh.getShardFailures();
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.NOT_FOUND) {
// TODO
}
}
return client;
}
14.10 Flush
POST twitter/_flush
---
/**
* https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-flush.html
* 索引的刷新进程通过将数据刷新到索引存储并清除内部事务日志,基本上将内存从索引中释放出来
* @return
* @throws IOException
*/
public static RestHighLevelClient flushIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
FlushRequest requestMultiple = new FlushRequest("index1", "index2");
try {
FlushResponse flushResponse = client.indices().flush(requestMultiple, RequestOptions.DEFAULT);
int totalShards = flushResponse.getTotalShards();
int successfulShards = flushResponse.getSuccessfulShards();
int failedShards = flushResponse.getFailedShards();
DefaultShardOperationFailedException[] failures = flushResponse.getShardFailures();
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.NOT_FOUND) {
// TODO
}
}
return client;
}
14.11 Clear Cache
# 清空缓存
POST /twitter/_cache/clear
---
/**
* 清除索引的缓存
* @return
*/
public static RestHighLevelClient clearCacheIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
ClearIndicesCacheRequest cacheRequest = new ClearIndicesCacheRequest("index1", "index2");
cacheRequest.queryCache(true); // 查询
cacheRequest.fieldDataCache(true); // 字段数据
cacheRequest.requestCache(true); // 请求
cacheRequest.fields("field1", "field2", "field3"); try {
ClearIndicesCacheResponse clearCache = client.indices().clearCache(cacheRequest, RequestOptions.DEFAULT);
int totalShards = clearCache.getTotalShards();
int successfulShards = clearCache.getSuccessfulShards();
int failedShards = clearCache.getFailedShards();
DefaultShardOperationFailedException[] failures = clearCache.getShardFailures();
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.NOT_FOUND) {
// TODO
}
}
return client;
}
14.12 Force Merge
Http
# 合并
POST /kimchy/_forcemerge?only_expunge_deletes=false&max_num_segments=&flush=true
# max_num_segments=,所有的段都重写为一个新的
POST /kimchy,elasticsearch/_forcemerge
Java
/**
* 合并一个或多个索引
* 此调用将阻塞,直到合并完成。如果http连接丢失,请求将在后台继续,任何新请求都将阻塞,直到前一个强制合并完成
* **强制合并只能对只读索引调用。对读写索引执行强制合并会导致产生非常大的段(每段大于5GB)
* https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-force-merge.html
* https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
* @return
*/
public static RestHighLevelClient ForceMergeIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
ForceMergeRequest requestMultiple = new ForceMergeRequest("index1", "index2");
// 要合并的分片数。要完全合并索引,请将其设置为1
requestMultiple.maxNumSegments(1);
// 合并过程是否删除标记为删除的段。在Lucene中,一个文档不是从一个段中删除,而是标记为已删除。在段的合并过程中,将创建一个没有这些删除的新段。
// 此标志只允许合并具有删除的段。默认值为false
requestMultiple.onlyExpungeDeletes(true);
requestMultiple.flush(true); try {
ForceMergeResponse forceMergeResponse = client.indices().forcemerge(requestMultiple, RequestOptions.DEFAULT);
int totalShards = forceMergeResponse.getTotalShards();
int successfulShards = forceMergeResponse.getSuccessfulShards();
int failedShards = forceMergeResponse.getFailedShards();
DefaultShardOperationFailedException[] failures = forceMergeResponse.getShardFailures();
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.NOT_FOUND) {
// TODO
}
}
return client;
}
14.13 Put Mapping
HTTP
# 增加一个不带type的索引
PUT twitter
{}
# 增加type
PUT twitter/_mapping/_doc
{
"properties": {
"email": {
"type": "keyword"
}
}
}
Java
/**
* 添加mapping(不能更新已存在的字段类型)
* @return
*/
public static RestHighLevelClient putMapping() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
PutMappingRequest request = new PutMappingRequest("twitter");
request.type("_doc");
// 我更喜欢Object key-pairs 的形式
request.source("message","type=text","name","type=keyword");
request.timeout(TimeValue.timeValueMinutes(2));
request.masterNodeTimeout(TimeValue.timeValueMinutes(1));
AcknowledgedResponse putMappingResponse = client.indices().putMapping(request, RequestOptions.DEFAULT);
boolean acknowledged = putMappingResponse.isAcknowledged();
System.out.println(acknowledged);
return client;
}
14.14 Get Mappings
HTTP
# 获取全部索引的Mapping,可以精确到type
GET /_all/_mapping/[Type]
#获取指定索引的Mapping
GET /twitter/_mapping/[Type]
# 例如:
GET /china_index/_mapping
...
{
"china_index" : {
"mappings" : {
"city" : {
"properties" : {
"cName" : {
"type" : "text"
},
"location" : {
"type" : "geo_point"
},
"pName" : {
"type" : "keyword"
}
}
}
}
}
}
Java
/**
* 获取mapping
* @return
* @throws IOException
*/
public static RestHighLevelClient getMapping() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetMappingsRequest request = new GetMappingsRequest();
request.indices("china_index");
request.types("city");
request.masterNodeTimeout(TimeValue.timeValueMinutes(1));
GetMappingsResponse getMappingResponse = client.indices().getMapping(request, RequestOptions.DEFAULT);
getMappingResponse.getMappings().forEach(e -> {
String key = e.key;
ImmutableOpenMap<String, MappingMetaData> value = e.value;
value.forEach(v -> {
System.out.println(key + "|" + v.key + "|" + v.value.getSourceAsMap());
});
});
return client;
}
结果:
china_index|city|{properties={pName={type=keyword}, cName={type=text}, location={type=geo_point}}}
14.15 Get Field Mappings
HTTP
# 查看具体字段的Mapping信息
GET [索引]/_mapping/field/[field1,field2]
GET china_index/_mapping/field/pName,location
..
{
"china_index" : {
"mappings" : {
"city" : {
"pName" : {
"full_name" : "pName",
"mapping" : {
"pName" : {
"type" : "keyword"
}
}
},
"location" : {
"full_name" : "location",
"mapping" : {
"location" : {
"type" : "geo_point"
}
}
}
}
}
}
}
Java
/**
* 获取指定字段的Mapping
* @return
* @throws IOException
*/
public static RestHighLevelClient getFieldMappings() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetFieldMappingsRequest request = new GetFieldMappingsRequest();
request.indices("china_index"); // 可以多个索引
request.types("city"); // 多个类型
request.fields("pName","location"); // 多个字段
GetFieldMappingsResponse response = client.indices().getFieldMapping(request, RequestOptions.DEFAULT);
Map<String, Map<String, Map<String, GetFieldMappingsResponse.FieldMappingMetaData>>> mappings = response.mappings();
mappings.keySet().forEach(e -> {
Map<String, Map<String, GetFieldMappingsResponse.FieldMappingMetaData>> mapMap = mappings.get(e);
mapMap.keySet().forEach(i -> {
Map<String, GetFieldMappingsResponse.FieldMappingMetaData> metaDataMap = mapMap.get(i);
metaDataMap.keySet().forEach(j -> {
GetFieldMappingsResponse.FieldMappingMetaData fieldMappingMetaData = metaDataMap.get(j);
System.out.println(e + "|" + i + "|" + j + "|" + fieldMappingMetaData.sourceAsMap());
});
});
});
return client;
}
结果:
china_index|city|pName|{pName={type=keyword}}
china_index|city|location|{location={type=geo_point}}
14.16 Index Aliases
HTTP
# 添加别名
POST /_aliases
{
"actions" : [
{ "remove" : { "index" : "test1", "alias" : "alias1" } },
{ "add" : { "index" : "test2", "alias" : "alias1" } }
]
}
# 例子
POST /_aliases
{
"actions" : [
{ "add" : { "index" : "my_source_index", "alias" : "alias111" } },
{ "add" : { "index" : "my_source_index2", "alias" : "alias222" } }
]
}
...
{
"acknowledged" : true
}
Java
/**
* 添加别名,这个方法只是列出了一些情况,如果要运行请先根据实际情况修改
* @return
*/
public static RestHighLevelClient indexAlias() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
IndicesAliasesRequest request = new IndicesAliasesRequest();
IndicesAliasesRequest.AliasActions aliasAction =
new IndicesAliasesRequest.AliasActions(IndicesAliasesRequest.AliasActions.Type.ADD)
.index("index1")
.alias("alias1");
// 添加别名,并指定routing
IndicesAliasesRequest.AliasActions addIndicesAction =
new IndicesAliasesRequest.AliasActions(IndicesAliasesRequest.AliasActions.Type.ADD)
.indices("index1", "index2")
.alias("alias2")
.routing("my_routing");
// 移除别名
IndicesAliasesRequest.AliasActions removeAction =
new IndicesAliasesRequest.AliasActions(IndicesAliasesRequest.AliasActions.Type.REMOVE)
.index("index3")
.alias("alias3");
// 删除索引
IndicesAliasesRequest.AliasActions removeIndexAction =
new IndicesAliasesRequest.AliasActions(IndicesAliasesRequest.AliasActions.Type.REMOVE_INDEX)
.index("index4");
request.addAliasAction(aliasAction);
AcknowledgedResponse indicesAliasesResponse =
client.indices().updateAliases(request, RequestOptions.DEFAULT);
boolean acknowledged = indicesAliasesResponse.isAcknowledged();
System.out.println(acknowledged);
return client;
}
14.17 Exists Alias
HTTP
# 检查
HEAD /my_source_index/_alias/alias111
# 从所有索引里面找别名为2016的
HEAD /_alias/
# 还可以使用通配符
HEAD /_alias/*
---
存在的话
- OK
不存在
- Not Found
Java
/**
* 判断别名是否存在
* @return
* @throws IOException
*/
public static RestHighLevelClient aliasExist() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetAliasesRequest request = new GetAliasesRequest();
request.aliases("alias222");
request.indices("my_source_index2");
// GetAliasesRequest requestWithAlias = new GetAliasesRequest("alias1"); // 单个
// GetAliasesRequest requestWithAliases =
// new GetAliasesRequest(new String[]{"alias1", "alias2"}); // 多个
boolean exists = client.indices().existsAlias(request, RequestOptions.DEFAULT);
System.out.println(exists);
return client;
}
结果:true
14.18 Get Alias
HTTP
# 获取
GET /my_source_index/_alias/alias111
--
{
"my_source_index" : {
"aliases" : {
"alias111" : { }
}
}
}
# 从所有索引里面找别名为alias222的
GET /_alias/alias222
--
{
"my_source_index2" : {
"aliases" : {
"alias222" : { }
}
}
}
# 还可以使用通配符
GET /_alias/*
# 显示索引的所有别名
GET /my_source_index/_alias/*
# 所有别名
GET /_alias/*
--
{
"my_target_index2" : {
"aliases" : {
"my_search_indices" : { }
}
},
"my_source_index2" : {
"aliases" : {
"alias222" : { }
}
},
".kibana_" : {
"aliases" : {
".kibana" : { }
}
},
"my_source_index" : {
"aliases" : {
"alias111" : { }
}
},
"my_target_index" : {
"aliases" : {
"my_search_indices" : { }
}
}
}
如果要删除
# 删除别名
DELETE /my_source_index/_alias/alias111
--
{
"acknowledged" : true
}
Java
/**
* 获取别名
* @return
* @throws IOException
*/
public static RestHighLevelClient getAlias() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetAliasesRequest request = new GetAliasesRequest();
request.aliases("alias222");
request.indices("my_source_index2");
// GetAliasesRequest requestWithAlias = new GetAliasesRequest("alias1");
// GetAliasesRequest requestWithAliases =
// new GetAliasesRequest(new String[]{"alias1", "alias2"});
GetAliasesResponse response = client.indices().getAlias(request, RequestOptions.DEFAULT);
Map<String, Set<AliasMetaData>> aliases = response.getAliases();
aliases.keySet().forEach(e -> {
Set<AliasMetaData> aliasMetaData = aliases.get(e);
System.out.println(e + ":" + aliasMetaData.toString());
});
return client;
}
结果:
my_source_index2:[{
"alias222" : { }
}]
14.19 Update Indices Settings
HTTP
# 更新setting
PUT /twitter/_settings
{
"index" : {
"number_of_replicas" : 2,
"refresh_interval" : "1s"
}
}
Java
/**
* 更新setting
* @return
* @throws IOException
*/
public static RestHighLevelClient updateSetting() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
// 更新单个
UpdateSettingsRequest request = new UpdateSettingsRequest("index1");
// 更新多个
//UpdateSettingsRequest requestMultiple =
// new UpdateSettingsRequest("index1", "index2");
// 全部更新
//UpdateSettingsRequest requestAll = new UpdateSettingsRequest();
Settings settings =
Settings.builder()
.put("index.number_of_replicas", 2)
.build();
request.settings(settings);
AcknowledgedResponse updateSettingsResponse =
client.indices().putSettings(request, RequestOptions.DEFAULT);
boolean acknowledged = updateSettingsResponse.isAcknowledged();
System.out.println(acknowledged);
return client;
}
14.20 Get Settings
HTTP
# 获取指定索引的settings
GET /twitter,kimchy/_settings
# 获取全部settings
GET /_all/_settings
Java
/**
* 获取setting
* @return
* @throws IOException
*/
public static RestHighLevelClient getSetting() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetSettingsRequest request = new GetSettingsRequest().indices("china_index");
GetSettingsResponse getSettingsResponse = client.indices().getSettings(request, RequestOptions.DEFAULT);
ImmutableOpenMap<String, Settings> settings = getSettingsResponse.getIndexToSettings();
settings.forEach(e -> {
System.out.println(e.key);
Settings value = e.value;
value.keySet().forEach(k -> {
System.out.println(k + ":" + value.get(k));
});
});
return client;
}
结果:
china_index
index.creation_date:1545294776325
index.number_of_replicas:1
index.number_of_shards:1
index.provided_name:china_index
index.uuid:LYn6XQ_sRZCazMtweW31ZA
index.version.created:6050099
14.21 Put Template & Get Templates
# 索引模板
PUT _template/template_
{
"index_patterns": ["te*", "bar*"],
"settings": {
"number_of_shards": 1
},
"mappings": {
"my_doc": {
"_source": {
"enabled": false
},
"properties": {
"host_name": {
"type": "keyword"
},
"created_at": {
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z YYYY"
}
}
}
}
}
# 删除模板
DELETE /_template/template_
# 获取模板
GET /_template/template_
# 获取所有模板
GET /_template
# 模板是否存在
HEAD _template/template_
14.22 Validate Query
public static RestHighLevelClient validateQuery() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
// ValidateQueryRequest需要一个或多个索引来验证查询。如果没有提供索引,则在所有索引上执行请求。
ValidateQueryRequest request = new ValidateQueryRequest("twitter");
QueryBuilder builder = QueryBuilders
.boolQuery()
.must(QueryBuilders.queryStringQuery("*:*"))
.filter(QueryBuilders.termQuery("user", "kimchy"));
request.query(builder);
request.allShards(true);// 默认情况下,请求只在一个随机选择的分片上执行
request.explain(true);
request.rewrite(true);
ValidateQueryResponse response = client.indices().validateQuery(request, RequestOptions.DEFAULT);
boolean isValid = response.isValid();
int totalShards = response.getTotalShards();
int successfulShards = response.getSuccessfulShards();
int failedShards = response.getFailedShards();
System.out.println("isValid:" + isValid + ",totalShards:" + totalShards + ",successfulShards:" + successfulShards + ",failedShards:" + failedShards);
if (failedShards > 0) {
for(DefaultShardOperationFailedException failure: response.getShardFailures()) {
String failedIndex = failure.index();
int shardId = failure.shardId();
String reason = failure.reason();
System.out.println("failedIndex:" + failedIndex + ",shardId:" + shardId + ",reason:" + reason);
}
}
for(QueryExplanation explanation: response.getQueryExplanation()) {
String explanationIndex = explanation.getIndex();
int shardId = explanation.getShard();
String explanationString = explanation.getExplanation();
System.out.println("explanationIndex:" + explanationIndex + ",shardId:" + shardId + ",explanationString:" + explanationString);
}
return client;
}
结果:
isValid:true,totalShards:5,successfulShards:5,failedShards:0
explanationIndex:twitter,shardId:0,explanationString:ConstantScore(user:kimchy)
explanationIndex:twitter,shardId:1,explanationString:ConstantScore(user:kimchy)
explanationIndex:twitter,shardId:2,explanationString:ConstantScore(user:kimchy)
explanationIndex:twitter,shardId:3,explanationString:ConstantScore(user:kimchy)
explanationIndex:twitter,shardId:4,explanationString:ConstantScore(user:kimchy)
14.23 Get Index
HTTP
# 获取所有索引信息
GET /_all
# 单个索引信息
GET /twitter
Java
/**
* 获取索引详细信息
* @return
* @throws IOException
*/
public static RestHighLevelClient getIndex() throws IOException {
RestHighLevelClient client = RestClientFactory.getInstance().getClient();
GetIndexRequest request = new GetIndexRequest().indices("_all"); // _all是关键字,列出所有索引信息。也可以是通配符*
GetIndexResponse indexResponse = client.indices().get(request, RequestOptions.DEFAULT); // Mappings
ImmutableOpenMap<String, ImmutableOpenMap<String, MappingMetaData>> mappings = indexResponse.getMappings();
mappings.forEach(e -> {
String key = e.key;
ImmutableOpenMap<String, MappingMetaData> map = e.value;
System.out.println("Index:" + key);
map.forEach(n -> {
String type = n.key;
MappingMetaData metaData = n.value;
System.out.println(type + "|" + metaData.getSourceAsMap());
});
}); // Aliases
System.out.println("**********************************");
ImmutableOpenMap<String, List<AliasMetaData>> aliases = indexResponse.getAliases();
aliases.forEach(e -> {
String key = e.key;
List<AliasMetaData> value = e.value;
System.out.println("----" + key + "----");
value.forEach(a -> {
System.out.println(a.alias());
});
});
// Settings
System.out.println("**********************************");
ImmutableOpenMap<String, Settings> defaultSettings = indexResponse.defaultSettings();
defaultSettings.forEach(e -> {
String key = e.key;
Settings value = e.value;
System.out.println("----" + key + "----");
value.keySet().forEach(k -> {
System.out.println(k + ":" + value.get(k));
});
});
ImmutableOpenMap<String, Settings> settings = indexResponse.getSettings();
settings.forEach(e -> {
String key = e.key;
Settings value = e.value;
System.out.println("----" + key + "----");
value.keySet().forEach(k -> {
System.out.println(k + ":" + value.get(k));
});
});
return client;
}
结果:
Index:china_shape_index
info|{properties={location={precision=100.0m, type=geo_shape}, remark={type=keyword}}}
Index:china_index
city|{properties={pName={type=keyword}, cName={type=text}, location={type=geo_point}}}
Index:books
java|{properties={title={type=text, fields={keyword={ignore_above=256, type=keyword}}}, user={type=text, fields={keyword={ignore_above=256, type=keyword}}}}}
Index:my_source_index2
Index:my_target_index2
Index:my_source_index
Index:users
info|{properties={address={analyzer=ik_max_word, type=text}, age={type=long}, username={type=keyword}}}
Index:my_target_index
Index:test
msg|{properties={message={analyzer=ik_max_word, type=text}}}
Index:.kibana_
doc|{dynamic=strict, properties={server={properties={uuid={type=keyword}}}, visualization={properties={savedSearchId={type=keyword}, description={type=text}, uiStateJSON={type=text}, title={type=text}, version={type=integer}, kibanaSavedObjectMeta={properties={searchSourceJSON={type=text}}}, visState={type=text}}}, graph-workspace={properties={numVertices={type=integer}, description={type=text}, numLinks={type=integer}, title={type=text}, version={type=integer}, kibanaSavedObjectMeta={properties={searchSourceJSON={type=text}}}, wsState={type=text}}}, kql-telemetry={properties={optInCount={type=long}, optOutCount={type=long}}}, type={type=keyword}, space={properties={color={type=keyword}, _reserved={type=boolean}, initials={type=keyword}, name={type=text, fields={keyword={ignore_above=2048, type=keyword}}}, description={type=text}}}, url={properties={accessCount={type=long}, accessDate={type=date}, url={type=text, fields={keyword={ignore_above=2048, type=keyword}}}, createDate={type=date}}}, migrationVersion={dynamic=true, type=object}, index-pattern={properties={notExpandable={type=boolean}, fieldFormatMap={type=text}, sourceFilters={type=text}, typeMeta={type=keyword}, timeFieldName={type=keyword}, intervalName={type=keyword}, fields={type=text}, title={type=text}, type={type=keyword}}}, search={properties={hits={type=integer}, columns={type=keyword}, description={type=text}, sort={type=keyword}, title={type=text}, version={type=integer}, kibanaSavedObjectMeta={properties={searchSourceJSON={type=text}}}}}, updated_at={type=date}, canvas-workpad={dynamic=false, properties={@created={type=date}, @timestamp={type=date}, name={type=text, fields={keyword={type=keyword}}}, id={index=false, type=text}}}, namespace={type=keyword}, telemetry={properties={enabled={type=boolean}}}, timelion-sheet={properties={hits={type=integer}, timelion_sheet={type=text}, timelion_interval={type=keyword}, timelion_columns={type=integer}, timelion_other_interval={type=keyword}, timelion_rows={type=integer}, description={type=text}, title={type=text}, version={type=integer}, kibanaSavedObjectMeta={properties={searchSourceJSON={type=text}}}, timelion_chart_height={type=integer}}}, config={dynamic=true, properties={buildNum={type=keyword}}}, dashboard={properties={hits={type=integer}, timeFrom={type=keyword}, timeTo={type=keyword}, refreshInterval={properties={display={type=keyword}, section={type=integer}, value={type=integer}, pause={type=boolean}}}, description={type=text}, uiStateJSON={type=text}, timeRestore={type=boolean}, title={type=text}, version={type=integer}, kibanaSavedObjectMeta={properties={searchSourceJSON={type=text}}}, optionsJSON={type=text}, panelsJSON={type=text}}}}}
Index:twitter
t_doc|{properties={msg={type=text, fields={keyword={ignore_above=256, type=keyword}}}, A={type=text, fields={keyword={ignore_above=256, type=keyword}}}, B={type=text, fields={keyword={ignore_above=256, type=keyword}}}, C={type=text, fields={keyword={ignore_above=256, type=keyword}}}, flag={type=text, fields={keyword={ignore_above=256, type=keyword}}}, D={type=text, fields={keyword={ignore_above=256, type=keyword}}}, color={type=text, fields={keyword={ignore_above=256, type=keyword}}}, updateUser={type=text, fields={keyword={ignore_above=256, type=keyword}}}, extMsg={type=text, fields={keyword={ignore_above=256, type=keyword}}}, counter={type=long}, message={type=text, fields={keyword={ignore_above=256, type=keyword}}}, field={type=text, fields={keyword={ignore_above=256, type=keyword}}}, size={type=text, fields={keyword={ignore_above=256, type=keyword}}}, post_date={type=date}, name={type=text, fields={keyword={ignore_above=256, type=keyword}}}, animal={properties={cat={type=text, fields={keyword={ignore_above=256, type=keyword}}}, dog={type=text, fields={keyword={ignore_above=256, type=keyword}}}}}, postDate={type=date}, hate={type=text, fields={keyword={ignore_above=256, type=keyword}}}, favorite={type=text, fields={keyword={ignore_above=256, type=keyword}}}, user={type=text, fields={keyword={ignore_above=256, type=keyword}}}}}
**********************************
----china_shape_index----
----.kibana_----
.kibana
----china_index----
----users----
----my_source_index----
----my_source_index2----
alias222
----my_target_index2----
my_search_indices
----my_target_index----
my_search_indices
----test----
----twitter----
----books----
**********************************
----my_target_index----
index.allocation.max_retries:
index.blocks.write:true
index.codec:best_compression
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:my_target_index
index.resize.source.name:my_source_index
index.resize.source.uuid:tSYNLldWQNCOlR5NJGaH9g
index.routing.allocation.initial_recovery._id:wCr6Uz0jTvGaTHh5acNxKA
index.routing_partition_size:
index.shrink.source.name:my_source_index
index.shrink.source.uuid:tSYNLldWQNCOlR5NJGaH9g
index.uuid:F976xviGQ965JU9patwQnA
index.version.created:
index.version.upgraded:
----twitter----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:twitter
index.uuid:TLReCXTSSe6tvI7yNveWgw
index.version.created:
----books----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:books
index.uuid:leQWEGe8So6B10awTItCNg
index.version.created:
----users----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:users
index.uuid:tyxNGtSsThOFDaTBBy7jKQ
index.version.created:
----my_source_index----
index.blocks.write:true
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:my_source_index
index.uuid:tSYNLldWQNCOlR5NJGaH9g
index.version.created:
----my_source_index2----
index.blocks.write:true
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:my_source_index2
index.uuid:iuDENl3uQku0Ef6flu8S-Q
index.version.created:
----test----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:test
index.uuid:qF3UiIqHTLK_X7FSUUhlGw
index.version.created:
----china_shape_index----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:china_shape_index
index.uuid:jhwyVqR0RQywyf3n7W0maQ
index.version.created:
----china_index----
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:china_index
index.uuid:LYn6XQ_sRZCazMtweW31ZA
index.version.created:
----.kibana_----
index.auto_expand_replicas:-
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:.kibana_
index.uuid:IvzG6JhgRJ-GgwTDWmmirQ
index.version.created:
----my_target_index2----
index.blocks.write:true
index.creation_date:
index.number_of_replicas:
index.number_of_shards:
index.provided_name:my_target_index2
index.resize.source.name:my_source_index2
index.resize.source.uuid:iuDENl3uQku0Ef6flu8S-Q
index.routing_partition_size:
index.uuid:ZBnocs2bSker45kb2lXoRw
index.version.created:
index.version.upgraded: Process finished with exit code
完
ElasticSearch6.5.0 【Java客户端之REST Client】的更多相关文章
- asp.net权限认证:OWIN实现OAuth 2.0 之客户端模式(Client Credential)
asp.net权限认证系列 asp.net权限认证:Forms认证 asp.net权限认证:HTTP基本认证(http basic) asp.net权限认证:Windows认证 asp.net权限认证 ...
- SpringBoot:elasticSearch 7.2.0 Java High Level REST Client 搜索 API
Springboot整合最新版elasticSearch参考之前的文章:SpingBoot:整合ElasticSearch 7.2.0 Search API SearchRequest用于与搜索文档, ...
- 《ElasticSearch6.x实战教程》之复杂搜索、Java客户端(下)
第八章-复杂搜索 黑夜给了我黑色的眼睛,我却用它寻找光明. 经过了解简单的API和简单搜索,已经基本上能应付大部分的使用场景.可是非关系型数据库数据的文档数据往往又多又杂,各种各样冗余的字段,组成了一 ...
- elasticsearch系列七:ES Java客户端-Elasticsearch Java client(ES Client 简介、Java REST Client、Java Client、Spring Data Elasticsearch)
一.ES Client 简介 1. ES是一个服务,采用C/S结构 2. 回顾 ES的架构 3. ES支持的客户端连接方式 3.1 REST API ,端口 9200 这种连接方式对应于架构图中的RE ...
- ElasticSearch6.0 Java API 使用 排序,分组 ,创建索引,添加索引数据,打分等(一)
ElasticSearch6.0 Java API 使用 排序,分组 ,创建索引,添加索引数据,打分等 如果此文章对你有帮助,请关注一下哦 1.1 搭建maven 工程 创建web工程 ...
- 《ElasticSearch6.x实战教程》之简单搜索、Java客户端(上)
第五章-简单搜索 众里寻他千百度 搜索是ES的核心,本节讲解一些基本的简单的搜索. 掌握ES搜索查询的RESTful的API犹如掌握关系型数据库的SQL语句,尽管Java客户端API为我们不需要我们去 ...
- ElasticSearch6.5.0 【安装IK分词器】
不得不夸奖一下ES的周边资源,比如这个IK分词器,紧跟ES的版本,卢本伟牛逼!另外ES更新太快了吧,几乎不到半个月一个小版本就发布了!!目前已经发了6.5.2,估计我还没怎么玩就到7.0了. 下载 分 ...
- Elasticsearch集群搭建及使用Java客户端对数据存储和查询
本次博文发两块,前部分是怎样搭建一个Elastic集群,后半部分是基于Java对数据进行写入和聚合统计. 一.Elastic集群搭建 1. 环境准备. 该集群环境基于VMware虚拟机.CentOS ...
- Solr JAVA客户端SolrJ 4.9使用示例教程
http://my.oschina.net/cloudcoder/blog/305024 简介 SolrJ是操作Solr的JAVA客户端,它提供了增加.修改.删除.查询Solr索引的JAVA接口.So ...
随机推荐
- selenium2 run in Jenkins GUI testing not visible or browser not open but run in background浏览器后台运行不可见
http://wiki.hudson-ci.org/display/HUDSON/Tomcat Tomcat from Windows GUI Testing in Windows Most Wi ...
- centos7网络配置方法
方法一:nmtui 这个是字符界面的图形化网络配置工具 方法二:nmcli 命令行配置 方法三:直接vim /etc/sysconfig/network-scripts/ens---- 编辑 ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
- RabbitMQ广播:fanout模式
一. 消息的广播需要exchange:exchange是一个转发器,其实把消息发给RabbitMQ里的exchange fanout: 所有bind到此exchange的queue都可以接收消息,广播 ...
- 爬虫系列二(数据清洗--->bs4解析数据)
一 BeautifulSoup解析 1 环境安装 - 需要将pip源设置为国内源,阿里源.豆瓣源.网易源等 - windows (1)打开文件资源管理器(文件夹地址栏中) (2)地址栏上面输入 %ap ...
- django 静态文件的配置
静态文件简介 一.准备文件 Jquery3.3.1文件,文件目录创建 二.创建过程如图 STATIC_URL = '/static/' #静态文件的别名 STATICFILES_DIRS=[ os.p ...
- 平滑升级你的Nginx
1.概述(可以直接跳过看第2部分) Nginx方便地帮助我们实现了平滑升级.其原理简单概括,就是: (1)在不停掉老进程的情况下,启动新进程. (2)老进程负责处理仍然没有处理完的请求,但不再接受处理 ...
- Storm入门(三)HelloWorld示例
一.配置开发环境 storm有两种操作模式: 本地模式和远程模式.使用本地模式的时候,你可以在你的本地机器上开发测试你的topology, 一切都在你的本地机器上模拟出来; 用远程模式的时候你提交的t ...
- WPFの命中测试
概述: WPF中的Canvas是常用的一个绘图控件,可以方便地在Canvas中添加我们需要处理的各种元素如:图片.文字等.但Canvas中元素增加到一定数量,并且有重合的时候,我们如何通过在Canv ...
- Android--图片轮播(banner)
使用步骤 Step 1.依赖banner Gradle dependencies{ compile 'com.youth.banner:banner:1.4.10' //最新版本 } 或者引用本地li ...