bzoj5286 [Hnoi2018]转盘
题目描述:
题解:
看了半个晚上终于明白了。
首先最优决策一定有:在起始点停留一段时间然后一直前进。
解释网上有很多,在这里不赘述了。
(由于是环,先把$T$数组倍长。)
首先基于决策我们的答案是$n-1+min_{i=1}^{n}i+max_{j=i}^{i+n-1}T[j]-j$
考虑到$i+n-1$的后面一定不会有$max$,我们可以把上式变成$n-1+min_{i=1}^{n}i+max_{j=i}^{2*n}T[j]-j$
那么右面那个的形式可以看做$min_{i=l}^{mid}i+max_{j=i}^{r}A[j]$,其中$A[j]=T[j]-j$
那么设$t[u]$等于上面这个是式子,$mx[u]=max_{i=l}^{r}A[i]$。
所以差不多是这个形状:
显然$mx[u]$可以从下往上$O(1)$转移。
至于$t$即答案数组,由于我们有线段树,所以在线段树上分治搞下去。
具体按$i$指向左边一半的左边还是右边讨论,两者取$min$。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
int n,m,op,T[N<<],ans;
struct segtree
{
int t[N<<],mx[N<<];
int query(int l,int r,int u,int bas)
{
if(l==r)return l+max(bas,mx[u]);
int mid = (l+r)>>;
if(bas<=mx[u<<|])return min(query(mid+,r,u<<|,bas),t[u]);
else return min(query(l,mid,u<<,bas),mid++bas);
}
void update(int l,int r,int u)
{
int mid = (l+r)>>;
t[u] = query(l,mid,u<<,mx[u<<|]);
mx[u] = max(mx[u<<],mx[u<<|]);
}
void build(int l,int r,int u)
{
if(l==r){t[u]=T[l],mx[u]=T[l]-l;return ;}
int mid = (l+r)>>;
build(l,mid,u<<);
build(mid+,r,u<<|);
update(l,r,u);
}
void insert(int l,int r,int u,int qx)
{
if(l==r){t[u]=T[l],mx[u]=T[l]-l;return ;}
int mid = (l+r)>>;
if(qx<=mid)insert(l,mid,u<<,qx);
else insert(mid+,r,u<<|,qx);
update(l,r,u);
}
}tr;
int main()
{
read(n),read(m),read(op);
for(int i=;i<=n;i++)
read(T[i]),T[i+n]=T[i];
tr.build(,*n,);
printf("%d\n",ans=tr.t[]+n-);
for(int x,y,i=;i<=m;i++)
{
read(x),read(y);
if(op)x^=ans,y^=ans;
T[x] = y,T[x+n] = y;
tr.insert(,*n,,x);tr.insert(,*n,,x+n);
printf("%d\n",ans=tr.t[]+n-);
}
return ;
}
bzoj5286 [Hnoi2018]转盘的更多相关文章
- BZOJ5286: [Hnoi2018]转盘 (线段树)
题意 给你绕成一圈的物品共 \(n\) 个 , 然后从其中一个开始选 , 每次有两种操作 , 一是继续选择当前物品 , 二是选择这个后一个物品 . 选择后一个物品要求当前的时刻大于后一个的 \(T_i ...
- 【BZOJ5286】[HNOI2018]转盘(线段树)
[BZOJ5286][HNOI2018]转盘(线段树) 题面 BZOJ 洛谷 题解 很妙的一道题目啊.(全世界除了我这题都有40分,就我是一个状压选手 首先来发现一些性质,我们走一圈一定不会更差. 为 ...
- [BZOJ5286][洛谷P4425][HNOI2018]转盘(线段树)
5286: [Hnoi2018]转盘 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 15 Solved: 11[Submit][Status][Di ...
- 5286: [Hnoi2018]转盘
5286: [Hnoi2018]转盘 链接 分析: $\min\limits_{i=1}^n \{ \max\limits_{j=i}^{i + n - 1} \{ a_{j}+i \} \} +n- ...
- [HNOI2018]转盘
[HNOI2018]转盘 给你一个 \(n\) 元环, 你可以在 \(0\) 时刻从任意一个位置出发, 每一秒可以选择往后或者留在原地每个点有个参数 \(T_i\) , 当你走到 \(i\) 的时间 ...
- bzoj 5286: [Hnoi2018]转盘
Description Solution 首先注意到一个点不会走两次,只会有停下来等待的情况,把序列倍长 那么如果枚举一个起点\(i\),答案就是 \(min(max(T[j]+n-(j-i)-1)) ...
- BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)
BZOJ LOJ 洛谷 如果从\(1\)开始,把每个时间\(t_i\)减去\(i\),答案取决于\(\max\{t_i-i\}\).记取得最大值的位置是\(p\),答案是\(t_p+1+n-1-p=\ ...
- [HNOI2018]转盘[结论+线段树]
题意 题目链接 分析 首先要发现一个结论:最优决策一定存在一种 先在出发点停留之后走一圈 的情况,可以考虑如下证明: 如果要停留的话一定在出发点停留,这样后面的位置更容易取到. 走超过两圈的情况都可以 ...
- 【比赛】HNOI2018 转盘
通过这题,我发现了我最大的缺陷,就是题目中重要的性质发现不了,所以导致后期根本做不了.还是要多做题,培养思维 对于这道题,来发现性质吧 对于每一条路线,因为它有用的就是最终的时刻,所以我们都可以把它变 ...
随机推荐
- bzoj1139:[POI2009]Wie
传送门 状压dp,最短路 spfa似乎特别慢 代码: #include<cstdio> #include<iostream> #include<algorithm> ...
- python操作rabbitmq实现消息过滤接收
目标: 代码实现(direct_product.py) # __author__ = 'STEVEN' import pika,sys #开启socket connection = pika.Bloc ...
- Xor-MST Codeforces - 888G
https://codeforces.com/contest/888/problem/G 这题可以用Boruvka算法: 一开始每个点是一个连通块.每次迭代对于每个连通块找到其最近邻居(与其有边相连且 ...
- Hive_Hive的管理_web界面方式
端口:9999启动方式: hive --service hwi &通过浏览器访问:http://<IP地址>:9999/hwi/ 执行启动命令后,报错,找不到hive-hwi-*. ...
- TAIL and HEAD
TAIL and HEAD tail tail:将指定的文件的最后部分输出到标准设备,通常是终端,和cat以及more等显示文本的差别在于:假设该档案有更新,tail会自己主动刷新,确保你看到最新的档 ...
- Linux磁盘根目录满了问题解析
linux里的log文件被删除后,空间没有被释放,是因为在Linux系统中,通过rm或者文件管理器删除文件将会从文件系统的目录结构上解除链接(unlink).然而如果文件是被打开的(有一个进程正在使用 ...
- css命名规范—CSS样式命名整理
CSS样式命名整理 页面结构 容器: container/wrap整体宽度:wrapper页头:header内容:content页面主体:main页尾:footer导航:nav侧栏:sidebar栏目 ...
- static心得
TextClass text; 吉晨 static注意 只要显式调用一个类的某一个static变量,那么就会连带static块,所有static变量一起调用,哪怕不去new一个对象,这时候已经对这 ...
- 添加 SSH 公钥
生成 SSH 密钥 ssh-keygen -t rsa -C "YOUR_EMAIL@YOUREMAIL.COM" 获取 SSH 公钥信息 cat ~/.ssh/id_rsa.pu ...
- iterator与iterable
用Iterator模式实现遍历集合Iterator模式是用于遍历集合类的标准访问方法.它可以把访问逻辑从不同类型的集合类中抽象出来,从而避免向客户端暴露集合的内部结构.例如,如果没有使用Iterato ...