题目大意

有一个长度为n的数组A

有n个函数,第i个函数 $$f(l[i],r[i])=\sum_{k=l[i]}^{r[i]}A_k$$

有两种操作:

1)修改A[i]

2)询问第x-y个函数值的和。

数据范围:n<=100000

分析1

考虑询问时x=y的情况

如何用尽可能快的速度回答询问?

维护\(sum1[i]\)表示前i块的前缀和

维护\(sum2[i][j]\)表示第i块中的前j个数的前缀和

修改时暴力维护\(sum2\),接着暴力维护\(sum1\)

复杂度\(O(2*\sqrt n)\)

询问就可以\(O(1)\)了

分析2

如何结局区间函数询问呢

我们对函数也分块

维护\(all[i]\)表示第i块函数的值

维护\(cov[i][j]\)表示第\(i\)块中,有多少个函数包含\(A[j]\)

对于\(cov\)数组,它是不会改变的

预处理时对于每块扫一次

用差分+前缀和的方法做到\(O(n\sqrt n)\)

对于\(all\)

每次修改时扫一下\(\sqrt n\)个块,用\(cov\)数组看下修改的那个单点对这个块的\(all\)的影响

注意

别再把BL,BR写成x,y了好嘛?

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int M=100007;
const int N=320;
typedef unsigned long long LL; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m,sn,MX;
LL val[M];
struct node{int l,r;}q[M]; LL sum1[N];
LL sum2[N][N];
LL cov[N][M];
LL all[N]; int loc(int x){
return x/sn+1;
} int getL(int x){
return max((x-1)*sn,1);
} int getR(int x){
return min(x*sn-1,n);
} int getP(int x){
int L=getL(loc(x));
return x-L+1;
} void init_sum(int x){
int i,L=getL(x),R=getR(x);
LL nw=0;
for(i=L;i<=R;i++){
nw+=val[i];
sum2[x][getP(i)]=nw;
}
sum2[x][sn]=nw;//这样方便
for(int i=x;i<=MX;i++) sum1[i]=sum1[i-1]+sum2[i][sn];
} LL get_sum(int x,int y){
int L,R,BL,BR;
BL=loc(x); BR=loc(y);
if(BL+1>=BR){
if(BL==BR) return sum2[BL][getP(y)]-sum2[BL][getP(x)-1]; return sum2[BR][getP(y)]-sum2[BL][getP(x)-1]+sum2[BL][sn];
}
else{
if(getL(BL)!=x) BL++;
if(getR(BR)!=y) BR--;
L=getL(BL); R=getR(BR);
LL res=sum1[BR]-sum1[BL-1];
if(R!=y) res+=sum2[BR+1][getP(y)];
if(L!=x) res+=sum2[BL-1][sn]-sum2[BL-1][getP(x)-1];
return res;
}
} void init_cov(int x){
int L=getL(x),R=getR(x);
for(int i=L;i<=R;i++){
cov[x][q[i].l]++;
cov[x][q[i].r+1]--;
all[x]+=get_sum(q[i].l,q[i].r);
}
for(int i=1;i<=n;i++){
cov[x][i]+=cov[x][i-1];
}
} int main(){
int i,kd,x,y,BL,BR,L,R;
n=rd();
sn=(int)sqrt(n);
MX=loc(n); for(i=1;i<=n;i++) val[i]=rd(); for(i=1;i<=n;i++) q[i].l=rd(),q[i].r=rd(); for(i=1;i<=MX;i++) init_sum(i);
for(i=1;i<=MX;i++)
init_cov(i); m=rd(); while(m--){
kd=rd();
x=rd(),y=rd();
if(kd==1){
y-=val[x];
val[x]+=y;
init_sum(loc(x));
for(i=1;i<=MX;i++) all[i]+=cov[i][x]*y;
}
else{
LL ans=0;
BL=loc(x); BR=loc(y); if(BL+1>=BR){
for(i=x;i<=y;i++) ans+=get_sum(q[i].l,q[i].r);
}
else{
if(getL(BL)!=x) BL++;
if(getR(BR)!=y) BR--;
L=getL(BL); R=getR(BR);
for(i=BL;i<=BR;i++) ans+=all[i];
for(i=x;i<L;i++) ans+=get_sum(q[i].l,q[i].r);
for(i=y;i>R;i--) ans+=get_sum(q[i].l,q[i].r);
}
printf("%llu\n",ans);
}
} return 0;
}

chef and churu 分块 好题的更多相关文章

  1. CodeChef Chef and Churu [分块]

    题意: 单点修改$a$ 询问$a$的区间和$f$的区间和 原来普通计算机是这道题改编的吧... 对$f$分块,预处理$c[i][j]$为块i中$a_j$出现几次,$O(NH(N))$,只要每个块差分加 ...

  2. 【Codechef-Hard】Chef and Churu 分块

    题目链接: https://www.codechef.com/problems/FNCS Solution 大力分块.. 对序列分块,维护块内前缀和.块的前缀和,修改时暴力维护两个前缀和,询问单点答案 ...

  3. [CC-FNCS]Chef and Churu

    [CC-FNCS]Chef and Churu 题目大意: 一个长度为\(n(n\le10^5)\)的数列\(A_{1\sim n}\),另有\(n\)个函数,第\(i\)个函数会返回数组中标号在\( ...

  4. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  5. BZOJ 2724 蒲公英 | 分块模板题

    题意 给出一个序列,在线询问区间众数.如果众数有多个,输出最小的那个. 题解 这是一道分块模板题. 一个询问的区间的众数,可能是中间"整块"区间的众数,也可能是左右两侧零散的数中的 ...

  6. Luogu 2801 教主的魔法 | 分块模板题

    Luogu 2801 教主的魔法 | 分块模板题 我犯的错误: 有一处l打成了1,还看不出来-- 缩小块大小De完bug后忘了把块大小改回去就提交--还以为自己一定能A了-- #include < ...

  7. hzwer分块九题(暂时持续更新)

    hzwer分块9题 分块1:区间加法,单点查询 Code #include<bits/stdc++.h> #define in(i) (i=read()) using namespace ...

  8. CodeChef - FNCS Chef and Churu(分块)

    https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...

  9. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

随机推荐

  1. Nat Nanotechnol | 朱涛/陈春英等合作发现碳纳米管呼吸暴露后的延迟毒性导致小鼠原位乳腺肿瘤的多发性广泛转移

    碳纳米管(Carbon nanotube, CNT)是重要的一维纳米材料,由于其良好的力学.电学和化学性能,可用作超强纤维.隐身材料.大功率超级电容器.传感器等,在纳米材料.信息.光电.能源.传感及生 ...

  2. C语言预处理_05

    凡是以 “#”开头的均为预处理命令! 其定义的一般形式为: #define  标示符  字符串 对于宏定义说明以下几点: 1.宏定义是用宏名来表示一个字符串,在宏展开时又以该字符串取代宏名,这只是一种 ...

  3. nodejs写一个简单的Web服务器

    目录文件如 httpFile.js如下: const httpd = require("http"); const fs = require("fs"); // ...

  4. 2019.5.18-5.19 ACM-ICPC 全国邀请赛(西安)赛后总结

    第一次出去比赛经验太少了!!!果然最大目的是长见识和受刺激Orz 以下流水账: 背了本两千两百页的牛津高阶英汉双解词典,背了吃的,背了衣服……以后这些东西统统不带,买本口袋词典即可.上述物品这次比赛全 ...

  5. poj1265 Area

    题目描述: vjudge POJ 由于题目乱码概括一下题意: 给出一个路径,求围成多边形中内部点数.边上点数(包括顶点)以及面积. 题解: 边上点数=$\sum gcd(dx,dy)$ $Pick$定 ...

  6. 关于bc中小数点length,scale,(())以及进制转换

    这是我在codewar上遇到的一个题,我用我自己的方法做出了解答,如下: 1 #!/bin/bash 2 3 distance=`echo "$1*10000"|bc|cut -d ...

  7. codis 配置

    #修改dashboard.toml: coordinator_name = "zookeeper" coordinator_addr = "192.168.56.101: ...

  8. mysql 5.7安装密码校验插件validate_password

    在使用服务器插件之前,必须将它们加载到服务器中.MySQL支持在服务器启动和运行时加载插件.还可以在启动时控制加载插件的激活状态,并在运行时卸载它们.在加载插件时,可以从INFORMATION_SCH ...

  9. Node项目实战-静态资源服务器

    打开github,在github上创建新项目: Repository name: anydoor Descripotion: Tiny NodeJS Static Web server 选择:publ ...

  10. 一个炫酷的flash网站模板

    这是一个炫酷的flash欧美网站模板,它包括首页,公司简介,留言等五个页面,界面转换非常的炫酷!他还有时间.全屏.背景音乐开关的功能!有兴趣的朋友可以看看!贴几张网站图片给大家看看! 下载后直接找到s ...