Back to Kernighan-Ritchie
Input: Standard Input

Output: Standard Output

You must have heard the name of Kernighan and Ritchie, the authors of The C Programming Language. While coding in C, we use different control statements and loops, such as, if-then-elsefordo-while, etc. Consider the following fragment of pseudo code:

//execution starts here

do {

U;

V;

} while(condition);

W;

In the above code, there is a bias in each conditional branch. Such codes can be represented by control flow graphs like below:

Let the probability of jumping from one node of the graph to any of its adjacent nodes be equal. So, in the above code fragment, the expected number of times U executes is 2. In this problem, you will be given with such a control flow graph and find the expected number of times a node is visited starting from a specific node.

Input

Input consists of several test cases. There will be maximum 100 test cases. Each case starts with an integer: n (n ≤ 100). Here n is the number of nodes in the graph. Each node in the graph is labeled with 1 ton and execution always starts from 1. Each of the next few lines has two integers: start and end which means execution may jump from node startto node end. A value of zero for start ends this list. After this, there will be an integer q (q ≤ 100) denoting the number of queries to come. Next q lines contain a node number for which you have to evaluate the expected number of times the node is visited. The last test case has value of zero for n which should not be processed.

Output

Output for each test case should start with “Case #i:” with next q lines containing the results of the queries in the input with three decimal places. There can be situations where a node will be visited forever (for example, an infinite for loop). In such cases, you should print “infinity” (without the quotes). See the sample output section for details of formatting.

Sample Input                                  Output for Sample Input

3

1 2

2 3

2 1

0 0

3

1

2

3

3

1 2

2 3

3 1

0 0

3

3

2

1

0

Case #1:

2.000

2.000

1.000

Case #2:

infinity

infinity

infinity


Problem setter: Mohammad Sajjad Hossain

Special Thanks: Shahriar Manzoor

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <cmath>
using namespace std; const int maxn=;
const double eps=1e-;
typedef double Matrix[maxn][maxn];
Matrix A;
int n,d[maxn];//d数组存i节点的初读
bool inf[maxn];//标记无穷变量
vector<int> pre[maxn];//存i节点的前驱 void swap(double &a,double &b){double t=a;a=b;b=t;} void gauss_jordan()
{
int i,j,r,k;
for(i=;i<n;i++)
{
r=i;
for(j=i+;j<n;j++)
if(fabs(A[j][i])>fabs(A[r][i])) r=j;
if(fabs(A[r][i])<eps) continue;
if(r!=i)for(j=;j<=n;j++) swap(A[r][j],A[i][j]);
//与第i行以外的其他行进行消元
for(k=;k<n;k++) if(k!=i)
for(j=n;j>=i;j--) A[k][j]-=A[k][i]/A[i][i]*A[i][j];
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int i,j,icase=;
while(scanf("%d",&n),n)
{
memset(d,,sizeof(d));
for(i=;i<n;i++) pre[i].clear();
int a,b;
while(scanf("%d %d",&a,&b),a)
{
a--;b--;d[a]++;
pre[b].push_back(a);
}
memset(A,,sizeof(A));
for(i=;i<n;i++)//构造方程组
{
A[i][i]=;
for(j=;j<pre[i].size();j++)
A[i][pre[i][j]]-=1.0/d[pre[i][j]];
if(i==) A[i][n]=;
}
//解方程组,标记无穷变量
gauss_jordan();
memset(inf,,sizeof(inf));
for(i=n-;i>=;i--)
{
if(fabs(A[i][i])<eps && fabs(A[i][n])>eps) inf[i]=true;//这个变量无解,标记为无穷变量
for(j=i+;j<n;j++)//跟无穷变量扯上关系的也是无穷的
if(fabs(A[i][j])>eps && inf[j]) inf[i]=true;
}
int q,p;
scanf("%d",&q);
printf("Case #%d:\n",++icase);
while(q--)
{
scanf("%d",&p);p--;
if(inf[p]) printf("infinity\n");
else printf("%.3lf\n",fabs(A[p][p])<eps?0.0:A[p][n]/A[p][p]);
}
}
return ;
}

uva 10828 高斯消元求数学期望的更多相关文章

  1. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  2. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

  3. hdu 4870 rating(高斯消元求期望)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)

    网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...

  5. 【BZOJ2137】submultiple 高斯消元求伯努利数

    [BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...

  6. SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways no tags  In some countries building highways takes a lot of time... Maybe that's bec ...

  7. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  8. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  9. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

随机推荐

  1. 利用Vue.js实现登录/登出以及JWT认证

    JSON Web Token 入门教程:http://www.ruanyifeng.com/blog/2018/07/json_web_token-tutorial.html 后端代码地址:https ...

  2. 机器学习十大常用算法(CITE 不会停的蜗牛 ) interesting

    算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问 ...

  3. Flash as3.0 保存MovieClip运动轨迹到json文件

    //放在第一帧调用 import flash.events.Event; import flash.display.MovieClip; stage.addEventListener(Event.EN ...

  4. NOIP2016——大家一起实现の物语

    由于最近硬盘挂了,换了个固态硬盘,比赛结束后四天一直在装Linux,所以最近一直没怎么更新 看起来挺漂亮的 比赛前一个月申请停了一个月晚自习,在我们这座城市里能做到这种事情已经可以被称为奇迹了,并且在 ...

  5. java工作环境配置jdk,idea

    下载 jdk 1.8 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 配置环境 ...

  6. vue 顶级组件

    快 有时候懒的把一些通用组件写到template里面去,而业务中又需要用到,比如表示loading状态这样组件. 如果是这样的组件,可以选择把组件手动初始化,让组件在整个app生命周期中始终保持活跃. ...

  7. 「新手必看」Python+Opencv实现摄像头调用RGB图像并转换成HSV模型

    在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助 ...

  8. python基础学习笔记——字符串方法

    索引和切片: 索引:取出数组s中第3个元素:x=s[2] 切片:用极少的代码将数组元素按需处理的一种方法.切片最少有1个参数,最多有3个参数,演示如下: 我们假设下面所用的数组声明为array=[2, ...

  9. loj2020 「HNOI2017」礼物

    所有的下标从 \(0\) 开始. 考虑枚举 \(C\) (第一个加上负的等于第二个加上其绝对值)和第二个手链的偏移量 \(p\).答案就是 \[\sum_{i=0}^{n-1}(x_i+C-y_{(i ...

  10. web安全测试---AppScan扫描工具(转)

    安全测试应该是测试中非常重要的一部分,但他常常最容易被忽视掉. 尽管国内经常出现各种安全事件,但没有真正的引起人们的注意.不管是开发还是测试都不太关注产品的安全.当然,这也不能怪我们苦B的“民工兄弟” ...