完全平方数(bzoj 2440)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50
/*
有一个很显然的结论是最后的答案肯定不超过n*2,然后接可以二分答案,接下来就是判断有多少<=x的数满足它的质因数的指数都是1。
一个方法是去排除所有i^2的倍数(i为素数),这会让人联想到容斥?
ans=n-奇数个质数的平方的倍数的个数+偶数个质数的平方的倍数的个数。
利用莫比乌斯函数可以完美的解决这个问题 -1(i为奇数个素数的乘积)
mul[i] = 1(i为偶数个素数的乘积)
0(i有某个因数的指数不为1)
*/
#include<cstdio>
#include<cmath>
#include<iostream>
#define N 100000
#define lon long long
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
using namespace std;
int f[N],prime[N],miu[N];lon n;
void init(){
miu[]=;
for(int i=;i<N;i++){
if(!f[i]){
prime[++prime[]]=i;
miu[i]=-;
}
for(int j=;j<=prime[];j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
miu[i*prime[j]]=-miu[i];
if(i%prime[j]==){
miu[i*prime[j]]=;
break;
}
}
}
}
lon check(lon mid){
lon t=sqrt(mid),tot=;
for(int i=;i<=t;i++)
tot+=miu[i]*(mid/(lon)(i*i));
return tot;
}
int main(){
int T;scanf("%d",&T);init();
while(T--){
scanf(LL,&n);
lon l=,r=n*,ans;
while(l<=r){
lon mid=l+r>>;
if(check(mid)>=n) r=mid-,ans=mid;
else l=mid+;
}
printf(LL,ans);printf("\n");
}
return ;
}
完全平方数(bzoj 2440)的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- BZOJ 2440 完全平方数
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 966 Solved: 457 [Submit][Sta ...
随机推荐
- Linux下手动备份还原硬盘主引导记录MBR跟硬盘分区表DPT教程
Linux下手动备份还原硬盘主引导记录MBR跟硬盘分区表DPT教程 二 18 奶牛 Linux, Ubuntu, Windows 1,885 views查看评论 最近奶牛一直在折腾linux下的gru ...
- 【NOIP2017提高组模拟7.3】B
树上路径统计,点分治解决. 统计一段区间,naive地用了set解决,这样的复杂度是O(nlog^2n)的 考场代码出了个问题,统计答案时找到了之前的最优答案,但是没有加上新的一段,导致60分 #in ...
- Python爬虫系列-BeautifulSoup详解
安装 pip3 install beautifulsoup4 解析库 解析器 使用方法 优势 劣势 Python标准库 BeautifulSoup(markup,'html,parser') Pyth ...
- 15Shell脚本—流程控制
流程控制语句 尽管可以通过使用Linux命令.管道符.重定向以及条件测试语句编写最基本的Shell脚本,但是这种脚本并不适用于生产环境.原因是它不能根据真实的工作需求来调整具体的执行命令,也不能根据某 ...
- Linux之ssh服务介绍
一.什么是SSH? 简单说,SSH(Secure Shell Protocol)是一种网络协议,用于计算机之间的加密登录.在默认状态下SSH服务提供俩个服务功能,一个是提供类似telnet远程联机服务 ...
- 如何固定电脑IP
百度经验里有:http://jingyan.baidu.com/article/2f9b480d579fc041cb6cc297.html 但是就关于如何填写DNS时,就不知道咋办了,特意问了一下IT ...
- Hadoop4.2HDFS测试报告之五
第二组:文件存储读过程记录 NameNode:1 DataNode:1 本地存储 scp romotepath localpath 500 2 1 23.05 NameNode:1 DataNode: ...
- luogu1742 最小圆覆盖
狗题卡我精度--sol #include <algorithm> #include <iostream> #include <cstdlib> #include & ...
- 使用css Flexbox实现垂直居中
CSS布局对我们来说一直是个噩梦,我们都认为flexbox是我们的救世主.是否真的如我们说说,还有待观察,但是flexbox确非常轻松的解决css长久一来比较难解决的居中问题.让我们来看看到底有多容易 ...
- Apache JMeter汉化手册
/*杜绝抄袭,分享请注明链接:http://www.cnblogs.com/yana789 Apache JMeter 应用是纯java开源的应用工具,压力测试和负载测试的容易上手工具. Apache ...